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Preface

On behalf of the Program Committee, it is my pleasure to present the pro-
ceedings of the 5th GI International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA).

Every year since 2004 DIMVA has brought together leading researchers and
practitioners fromacademia, government and industry to present anddiscuss novel
security research. DIMVA is organized by the Security–Intrusion Detection and
Response (SIDAR) special interest group of the German Informatics Society (GI).

The DIMVA 2008 Program Committee received 42 submissions from 16 dif-
ferent countries, and from governmental, industrial and academic organizations.
All the submissions were carefully reviewed by several members of the Program
Committee and evaluated on the basis of scientific novelty, importance to the
field and technical quality. The final selection took place at the Program Com-
mittee meeting held on March 28, 2008 at the IBM Zürich Research Laboratory
in Switzerland. Thirteen full papers and one extended abstract were selected for
presentation and publication in the conference proceedings.

The conference took place during July 10-11, 2008, in the France Télécom
R&D/Orange Labs premises of Issy les Moulineaux, near Paris, France, with
the program grouped into five sessions. Two keynote speeches were presented
by Richard Bejtlich (Director of Incident Response, General Electric) and by
Tal Garfinkel (VMware Inc./Stanford University). The conference program also
included a rump session organized by Sven Dietrich of the Stevens Institute of
Technology, in which recent research results, works in progress, and other topics
of interest to the community were presented.

A successful conference is the result of the joint effort of many people. In
particular, I would like to thank all the authors who submitted papers, whether
accepted or not. I also thank the Program Committee members and additional
reviewers for their hard work in evaluating the submissions. In addition, I want to
thank the General Chair, Hervé Debar from France Télécom R&D, for handling
the conference arrangements and website, Tadeusz Pietraszek from Google for
publicizing the conference, and Ludovic Mé from Supélec for finding sponsor
support. Finally, I would like to express our gratitude to Google and EADS for
their financial sponsorship.

July 2008 Diego Zamboni



Organization

Organizing Committee
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Data Space Randomization�

Sandeep Bhatkar1 and R. Sekar2

1 Symantec Research Laboratories, Culver City, CA 90230, USA
2 Stony Brook University, Stony Brook, NY 11794, USA

Abstract. Over the past several years, US-CERT advisories, as well
as most critical updates from software vendors, have been due to mem-
ory corruption vulnerabilities such as buffer overflows, heap overflows,
etc. Several techniques have been developed to defend against the ex-
ploitation of these vulnerabilities, with the most promising defenses be-
ing based on randomization. Two randomization techniques have been
explored so far: address space randomization (ASR) that randomizes the
location of objects in virtual memory, and instruction set randomization
(ISR) that randomizes the representation of code. We explore a third
form of randomization called data space randomization (DSR) that ran-
domizes the representation of data stored in program memory. Unlike
ISR, DSR is effective against non-control data attacks as well as code
injection attacks. Unlike ASR, it can protect against corruption of non-
pointer data as well as pointer-valued data. Moreover, DSR provides a
much higher range of randomization (typically 232 for 32-bit data) as
compared to ASR. Other interesting aspects of DSR include (a) it does
not share a weakness common to randomization-based defenses, namely,
susceptibility to information leakage attacks, and (b) it is capable of de-
tecting some exploits that are missed by full bounds-checking techniques,
e.g., some of the overflows from one field of a structure to the next field.
Our implementation results show that with appropriate design choices,
DSR can achieve a performance overhead in the range of 5% to 30% for
a range of programs.

Keywords: memory error, buffer overflow, address space randomization.

1 Introduction

Memory errors continue to be the principal culprit behind most security vul-
nerabilities. Most critical security updates from software vendors in the past
several years have addressed memory corruption vulnerabilities in C and C++
programs. This factor has fueled a lot of research into defenses against exploita-
tion of these vulnerabilities. Early research targeted specific exploit types such
as stack-smashing, but attackers soon discovered alternative ways to exploit
memory errors. Subsequently, randomization based defenses emerged as a more

� This research is supported in part by an ONR grant N000140710928 and an NSF
grant CNS-0627687. This work was part of the first author’s Ph.D. work [8] com-
pleted at Stony Brook University.

D. Zamboni (Ed.): DIMVA 2008, LNCS 5137, pp. 1–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Bhatkar and R. Sekar

systematic solution against these attacks. So far, two main forms of randomiza-
tion defenses have been explored: address-space randomization (ASR) [32,9] that
randomizes the locations of data and code objects in memory, and instruction
set randomization (ISR) [6,27] that randomizes the representation of code.

Although ASR and ISR have been quite effective in blocking most memory
exploits that have been used in the past, new types of exploits continue to emerge
that can evade them. As defenses such as ASR begin to get deployed, attackers
seek out vulnerabilities and exploits that go beyond them. One class of attacks
that can evade coarse-grained ASR is based on corrupting non-control data [13].
In particular, buffer overflows that corrupt non-pointer data are not captured by
coarse-grained ASR. Moreover, ASR implementations that are deployed today
suffer from the problem of low entropy. This enables brute-force attacks that
succeed relatively quickly — with about 128 attempts in the case of Windows
Vista, and 32K attempts in the case of PaX [32,35]. Finally, ASR techniques are
vulnerable to information leakage attacks that reveal pointer values in the victim
program. This can happen due to a bug that sends the contents of an uninitialized
buffer to an attacker — such data may contain pointer values that may have been
previously stored in the buffer. We therefore develop an alternative approach
for randomization, called data space randomization (DSR), that addresses these
drawbacks of previous randomization-based techniques.

The basic idea behind DSR is to randomize the representation of different
data objects. One way to modify data representation is to xor each data object
in memory with a unique random mask (“encryption”), and to unmask it before
its use (“decryption”). DSR can be implemented using a program transformation
that modifies each assignment x = v in the program into x = mx ⊕ v, where mx

is a mask associated with the variable x. Similarly, an expression such as x + y
will have to be transformed into (x ⊕ mx) + (y ⊕ my).

To understand how DSR helps defeat memory corruption attacks, consider a
buffer overflow attack involving an array variable a that overwrites an adjacent
variable b with a value v. As a result of DSR, all values that are written into
the variable a will use a mask ma, and hence the value stored in the memory
location corresponding to b would be v ⊕ ma. When b is subsequently used, its
value will be unmasked using mb and hence the result will be (v ⊕ ma) ⊕ mb,
which is different from v as long as we ensure ma �= mb. By using different
masks for different variables, we can ensure that even if the attacker manages to
overwrite b, all she would have accomplished is to write a random value into it,
rather than being able to write the intended value v.

Although inspired by PointGuard [17], which proposed masking of all pointer
values with a random value, our DSR technique differs from it in many ways.

– First, PointGuard is focused on preventing pointer corruption attacks — oth-
erwise known as absolute-address-dependent attacks. In contrast, the primary
goal of DSR is to prevent relative address attacks, such as those caused by
buffer overflows and integer overflows. Consequently, DSR is able to detect
non-control data attacks that don’t involve pointer corruption, such as at-
tacks that target file names, command names, userids, authentication data,



Data Space Randomization 3

etc. Moreover, since pointer corruption attacks rely on a preceding buffer
overflow, absolute-address-dependent attacks are also defeated by DSR.

– Second, DSR randomizes the representation of all types of data, as opposed
to PointGuard which randomizes only pointer-typed data. (Indeed, as a re-
sult of optimizations, the representation of many pointer variables are left
unchanged in DSR.) DSR uses different representations for different data
objects in order to prevent buffer overflows on one object from corrupting a
nearby object in a predictable way.

– Third, DSR corrects an important problem with PointGuard that can break
legitimate C-programs in which pointer and non-pointer data are aliased.
For instance, suppose that an integer-type variable is assigned a value of 0,
and subsequently, the same location is accessed as a pointer-type. The zero
value won’t be interpreted as a null value since PointGuard would xor it
with a mask m, thus yielding a pointer value m. We note that such aliasing
is relatively common due to (a) unions that contain pointer and non-pointer
data, (b) use of functions such as bzero or bcopy, as well as assignments
involving structs, and (c) type casts. DSR considers aliasing and hence does
not suffer from this drawback.

– Finally, like other previous randomization based defenses, PointGuard is
susceptible to information leakage attacks that leak the values of encrypted
pointers to a remote attacker. Since a simple xor mask is used, leakage of
masked data allows the attacker to compute the mask used by PointGuard.
She can then mount a successful attack where the appropriate bytes within
the attack payload have been masked using this mask. In contrast, DSR
is able to discover all instances where masked data is being accessed, and
unmask it before use. As a result, an information leakage attack will not
reveal masked values.

As compared to ASR, DSR provides a much larger range of randomization.
For instance, on 32-bit architectures, we can randomize integers and pointers
over a range of 232 values, which is much larger than the range possible with
ASR. Moreover, DSR can, in many instances, address the weakness of even the
fine-grained ASR techniques [10] concerning their inability to randomize relative
distances between certain data items, e.g., between the fields of a struct. Since
the C-language definition fixes the distance between struct fields, even bounds-
checking techniques do not provide protection from overflows across the fields
of a structure. In contrast, DSR has the ability to protect from such overflows
as long as there is no aliasing between these fields1. (However, this feature is
not currently supported due to our use of field-insensitive alias analysis in our
implementation.)

1 Typically, aliasing of multiple fields is induced by low-level functions such as bcopy
and bzero. DSR can use different masks for different fields of a struct object if the
object is not involved in these operations. In some cases, it is possible to improve
this further by incorporating the semantics of these block move operations into the
DSR implementation.
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A direct implementation of DSR concept can lead to nontrivial runtime over-
heads due to the need for masking/unmasking after every memory access, and
due to the additional memory overheads for accessing mask data. To provide
better performance, observe that the first step in memory corruption attacks
involve a buffer overflow, i.e., an operation that starts with the base address
of an object a in memory, but then accesses a different object b as a result of
out-of-bounds subscript or invalid pointer arithmetic operation. Our implemen-
tation focuses on disrupting this step. Note that this is possible even without
masking b, as long as we ensure that a uses a non-zero mask. A static analysis
can be used to identify overflow candidates, i.e., objects such as a that can serve
as a base address in an address arithmetic computation that goes out-of-bounds.
In its simplest form, this analysis would identify all arrays, structures contain-
ing arrays, and any other object whose address is explicitly taken in the code.
This optimization provides significant benefits since most variables accessed in
C-programs are simple local variables that can be determined to be non-overflow
candidates.

One of the main limitations of the DSR approach is the need to use the same
mask for overflow candidate objects that may be aliased. To mitigate the impact
of this limitation, our implementation attempts to allocate different objects with
the same mask in different memory regions that are separated by unmapped
pages. This ensures that even when two objects are assigned the same mask,
overflows from one of these objects to the other would be detected since it would
cause a memory fault due to the protection memory page in between the objects.
However, the number of overflow candidate objects with the same mask may
become very large for heap-allocated objects, and hence this approach may not
be appropriate for such objects. In those cases, our implementation essentially
provides probabilistic protection against overflows involving such objects.

1.1 Paper Organization

In Section 2, we describe the transformations to introduce data space random-
ization. In Section 3, we describe a prototype implementation of our technique.
In section 4, we evaluate performance overhead, and analyze the effectiveness
of our technique against different attacks. Related work is covered in Section 5,
followed by concluding remarks in Section 6.

2 Transformation Overview

Our transformation approach for DSR is based on a source-to-source transfor-
mation of C programs. The basic transformation is quite simple. For each data
variable v, we introduce another variable m_v which stores the mask value to be
used for randomizing the data stored in v using an exclusive-or operation. The
mask is a random number that can be generated at the beginning of program
execution for static variables, and at the time of memory allocation for stack
and heap variables. The size of m_v depends on the size of the data stored in v.
Ideally, we can store a fixed size (say, word length) random number in the mask
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variable, and depending on the size of the associated variable, we can generate
bigger or smaller masks from the random number. However, for simplicity of no-
tation, we will use mask variables having the same size as that of the variables
being masked.

The variables appearing in expressions and statements are transformed as
follows. Values assigned to variables are randomized. Thus, after every statement
that assigns a value to a variable v, we add the statement v = v ^ m_v to
randomize the value of the variable in the memory. Also, wherever a variable is
used, its value is first derandomized. This is done by replacing v with v ^ m_v.

So far the transformations seem straightforward, but we have not yet consid-
ered a case in which variable data is accessed indirectly by dereferencing pointers,
as in the following C-code snippet:

int x, y, z, *ptr;
...
ptr = &x;
...
ptr = &y;
...

L1: z = *ptr;

In the above code, the expression *ptr is an alias for either x or y. Since *ptr
is used in the assignment statement at L1, we need to unmask it before using its
value in the assignment. Therefore, the line should be transformed as:

z = m_z ^ (m_starptr ^ *ptr),
where m_z and m_starptr are respectively masks of z and *ptr. Unfortunately,
statically we cannot determine the mask m_starptr to be used for unmasking;
it can be the mask of either variable x or y.

One way to address this problem is to dynamically track the masks to be used
for referents2 of all the pointers. This requires storing additional information
(henceforth called metadata) about pointers. Similar information is maintained
in some of the previous techniques that detect memory errors. In particular,
they store metadata using different data structures such as splay tree [26] and
fat pointers [4,30]. These metadata storing techniques lead to either high perfor-
mance overheads or code compatibility problems. For this reason, we chose to
avoid dynamic tracking of masks.

Our solution to the above problem is based on using static analysis3. More
specifically, we use the same mask for variables that can be pointed by a common

2 A referent of a pointer is an object that the pointer points to.
3 A static analysis typically assumes the absence of memory errors. Yet, in our work,

we expect that memory errors will occur, and expect the technique to defend against
them. In this regard, note that the effect of a memory error is to create additional
aliases at runtime — for instance, if p was a pointer to an array a, due to a buffer
overflow, it may also end up pointing to an adjacent object b. However, since the
static analysis did not report this possible aliasing, we would have assigned different
masks for a and b. As a result, the buffer overflow would corrupt b with values that
will appear “random,” when unmasked using mb.
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pointer. Thus, when the pointer is dereferenced, we know the mask to be used for
its referents statically. This scheme requires “points-to” information which can be
obtained by using pointer analysis, further described in Section 2.1. In the above
example, from the results of any conservative pointer analysis technique, we can
conclude that both variables x and y can be pointed by the pointer variable
ptr. Hence we can use the same mask for both x and y, and this mask can be
then used for unmasking *ptr, i.e., m_x = m_y = m_starptr. Mask assignment
based on the results of pointer analysis is described in Section 2.2.

The principal weakness of the DSR approach arises due to potential aliasing.
In particular, if two objects a and b can be aliased, then the same mask will be
used for both, which means that overflows from a to b cannot be detected. To
address this problem, we allocate objects that share the same mask in different
memory regions that are separated by an unmapped memory page. In this case, a
typical buffer overflow from a to b will attempt to modify data in this inaccessible
page, which causes a memory fault. We will revisit this solution in the discussion
of optimization later in this section.

2.1 Pointer Analysis

Ideally, we would like to associate a distinct mask with each variable. Unfortu-
nately, the use of pointers in C language potentially forces the assignment of the
same mask for different variables. As a result, variables are divided into different
equivalence classes. All the variables in a class are assigned the same mask, and
those belonging to different classes are assigned different masks. The number of
the equivalence classes depends on the precision of pointer analysis. Intuitively,
greater the precision, there will be more number of the equivalence classes.

A pointer analysis is, in general, computationally undecidable [33]. As a re-
sult, existing pointer analysis algorithms use approximations that provide vary-
ing degree of precision and efficiency. The worst-case time complexities of these
algorithms range from linear to exponential. We need to consider the time com-
plexity for the analysis to be efficient and scalable. There are several factors that
affect precision and efficiency of analysis. Such factors include flow-sensitivity,
context-sensitivity, modeling of heap objects, modeling of aggregate objects, and
representation of alias information [24]. We need to consider these factors while
choosing the analysis.

Algorithms involved in existing flow-sensitive analyses [25] are very expen-
sive in terms of time complexity (high order polynomials). Context-sensitive ap-
proaches [21,39] have exponential time complexity in the worst case. We avoid
these two types of analyses as they do not scale to large programs. Among the
flow-insensitive and context-insensitive algorithms, Andersen’s algorithm [3] is
considered to be the most precise algorithm. This algorithm has the worst case
cubic time complexity, which is still high for it to be used on large programs.
On the other hand, Steensgaard’s algorithm [37] has linear time complexity, but
it gives less precise results. Interestingly, as we shall show in the next section,
it turns out that the results of Andersen’s and Steensgaard’s analyses give us the
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...

void foo(int **s1)

}

foo(&s3);
foo(&s2);

(b)

s1

(c)

s2 = &s4;
s2 = &s5;
s3 = &s6;

{

(a)

s4 s5 s6

s2 s3

s1

s4,s5,s6

s2,s3

Fig. 1. Figure (a) above shows a sample C program for which points-to graph is com-
puted. Figures (b) and (c) show the points-to graphs computed by Andersen’s algorithm
and Steensgaard’s algorithm respectively.

same equivalence classes of variable masks. Therefore, we implemented Steens-
gaard’s algorithm for our purpose.

Steensgaard’s algorithm performs flow-insensitive and context-insensitive
inter-procedural points-to analysis that scales to large programs. It computes
points-to set over named variables corresponding to local, global and heap ob-
jects. We use single logical object to represent all heap objects that are allocated
at the same program point. We perform field-insensitive analysis, i.e., we do not
distinguish between different fields in the same structure or union. Our imple-
mentation is similar to the one described in [37].

2.2 Mask Assignment

Consider points-to graphs computed by Steensgaard’s and Andersen’s algorithms
as shown in Figure 1. A points-to graph captures points-to information in the
form of a directed graph, where nodes represent equivalence classes of symbols
and edges represent pointer relationships. Points-to information computed by
Andersen’s algorithm is more precise than that computed by Steensgaard’s al-
gorithm. For instance, according to Steensgaard’s graph, s2 may point to s6.
However, this relationship appears unlikely if we look at the program. Ander-
sen’s graph does not capture this relationship, hence it is more precise. In Steens-
gaard’s analysis, two objects that are pointed by the same pointer are unioned
into one node. This may lead to unioning of the points-to sets of formerly dis-
tinct objects. This kind of unioning makes the algorithm faster, but results in
less precise output as shown in the above example.

Now let us see how we can use the points-to information to determine the
equivalence classes of masks for the above example; we do this for Andersen’s
graph. Objects s2 and s3 can be accessed using the pointer dereference *s1. This
suggests that s2 and s3 should have the same mask, and therefore they belong
to the same equivalence class. Similarly, pointer dereference **s1 can be used
to access any of the objects pointed by s2 or s3. This implies that the objects
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Fig. 2. A Steensgaard’s point-to graph

pointed by s2 and s3 should have the same mask, and hence objects s4, s5 and
s6 should be merged into the same equivalence class. This merging is similar to
the unioning operation in Steensgaard’s algorithm. Therefore, the equivalence
classes of masks will be the same even in the case of Steensgaard’s graph. For the
above example, the complete set of equivalence classes of masks is {{s1}, {*s1,
s2, s3}, {**s1, *s2, *s3, s4, s5, s6}}. As Steensgaard’s and Andersen’s graphs
are equivalent from the point of view of determining masks, we use Steensgaard’s
algorithm for our purpose as it is more efficient than Andersen’s algorithm.

Now we formally define the procedure for determining masks using a Steens-
gaard’s points-to graph (refer Figure 2). In general, a points-to graph of a pro-
gram consists of disconnected components. Hence we consider the procedure only
for one component which can be similarly applied to all the graph components.
For this, let us first look at the properties of a Steensgaard’s points-to graph.
The unioning operation in Steensgaard’s algorithm enforces following properties
in the points-to graph. A node in the graph has at most one outdegree and zero
or more indegree. Owing to this, a connected component in the graph assumes
a tree-like structure, where a node can have multiple children corresponding to
the indegree edges, but at most one parent depending on the presence of an
outdegree edge. However, this does not imply that the component is always a
tree. There is a possibility that the root node of the tree-like structure may have
an outward edge pointing to any of the nodes in the component, resulting in a
cycle. Figure 2 shows such an edge as a dashed line.

We assign a distinct mask to each node of the points-to graph. Note that a
node may correspond to multiple variables. The mask of the node is thus used
for masking all of its variables.

The mask of an object that is accessed using a pointer dereference is de-
termined as follows. Let ptr be the pointer variable. First, the node N corre-
sponding to the pointer variable is located in the points-to graph. For the object
*ptr, its mask is the mask associated with the parent node parent(N). Similarly,
the mask of **ptr is the mask associated with parent(parent(N)), and so on.
Since each node has at most one parent, we can uniquely determine the masks
of objects accessed through pointer dereferences. Note that this procedure also
works for dereferences of a non-pointer variable that stores an address because
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the points-to graph captures the points-to relation involved. The procedure for
dereferences of pointer expressions involving pointer arithmetic is similar.

Optimization
Indiscriminate introduction of masking/unmasking operations can degrade per-
formance. For instance, many programs make use of a large number of variables
that hold integer (or floating-point) values. If we can avoid masking/unmasking
for such variables, significant performance gains are possible. At the same time,
we want to ensure that this optimization does not have a significant impact
on security. We show how this can be achieved by masking only the overflow
candidate objects.

There are two types of memory corruption attacks: absolute address-
dependent attacks and relative address-dependent attacks. Absolute address-
dependent attacks involve corruption of a pointer value. However, mechanisms
used for corrupting a pointer value, such as buffer overflows, heap overflows
and integer overflows, are in fact relative address-dependent. So if we can de-
feat relative address-dependent attacks, we get automatic protection for absolute
address-dependent attacks. Relative address-dependent attacks involve overflows
from overflow candidate objects, and we make these attacks difficult as described
below.

All non-overflow candidate objects are allocated in one memory region and
we separate memory for this region from the overflow candidate objects with an
unmapped memory page. As a result, overflows from overflow candidate objects
into non-overflow candidate objects become impossible.

Overflows from an overflow candidate object into another overflow candidate
object is possible. To address this problem, first we mask all the overflow candi-
date objects. Second, we identify objects that may be aliased, and allocate them
in disjoint areas of memory that are separated by an unmapped memory page.
Now, any attempt to overflow from one of these objects to the other will cause
a memory exception, since such a write must also write into the intervening un-
mapped page4. The number of memory regions needed is equal to the number of
different objects that use the same mask at runtime. This number can be stati-
cally estimated and is small for static data, and hence each such object can be
allocated in a disjoint memory area. In typical programs, this number appears to
be small for stack-allocated data, so we have been able to allocate such objects
across a small number of disjoint stacks. (We call them buffer stacks.) Note that
the strategy of removing overflow candidate objects from the main stack has
some additional benefits: it removes the possibility of a stack-smashing attack
— not only is the return address protected this way, but also other data such as

4 The details of this step are somewhat complicated by our choice of implementing
this technique using a source-to-source transformation, as opposed to modifying
a compiler. With this choice, we cannot control how the memory for objects is
allocated. We therefore borrowed a technique from [10] which uses an extra level of
indirection for accessing objects. Intuitively, this technique can be viewed as a means
to control the layout of objects.
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saved registers and temporaries. This is important since, as a source-to-source
transformation, we cannot ensure that saved registers and temporaries use a
mask. Since this data cannot be corrupted by buffer overflows, we mitigate this
weakness. If the number of stack objects with the same mask is large, we can
move the objects into the heap. Protection of these objects will then be the same
as that of heap objects.

For the heap, however, the number of distinct objects with the same mask
may be large, thereby making it difficult to allocate those objects from different
memory regions. As a result, our approach is to use a fixed number of memory
regions, and cycle the heap allocations through these regions as successive objects
with the same masks are allocated. This approach increases the likelihood of
successful buffer overflows across two heap blocks, but note that traditional
heap overflows, which are based on corrupting metadata stored at the beginning
(or end) of heap blocks will fail: an attempt to overwrite metadata value with x
will instead end up writing x^m_h, where m_h denotes the mask associated with
the heap block.

The technique of separating aliased objects with a guard page prevents the
common form of buffer overflows, which involve writing a contiguous (or closely
spaced) set of locations beyond the end of a buffer. However, there can be buffer
overflows that allow an attacker to corrupt memory that is far from the base
of the buffer. Such overflows are common in conjunction with integer overflows.
The guard-page technique does not protect against this attack. We therefore rely
on our relative-address randomization technique [10] as a second line of defense
against such attacks.

The technique described so far contains a vulnerability that occurs due to
reuse of storage for non-overflow candidate objects. For instance, such a vul-
nerability may arise in a program that uses an uninitialized pointer variable for
which we do not assign any mask. Now, if an attacker can control the previous
use of the memory corresponding to this pointer, she can potentially corrupt
the pointer with a chosen value. We address this vulnerability by ensuring that
all objects are initialized before use, which is any way necessary to prevent in-
formation leakage attacks. An information leakage attack targets randomization
techniques by exploiting a vulnerability that leaks the random values. An unini-
tialized non-overflow candidate variable may hold a masked value of a previously
used data, and if this value is leaked, it is possible for an attacker to derive the
mask. The attacker can then target other variables that share the derived mask.
Note that an overflow candidate object is not vulnerable to information leakage
attacks because any attempt to read this object will cause the mask associated
with the object to be applied. In other words, the attacker receives the plaintext
data rather than the masked data.

3 Implementation

Our transformation approach is applicable to C programs. We use CIL [29] as the
front end, and Objective Caml as the implementation language. We describe our
implementationapproach for a 32-bitx86 architecture andLinuxoperating system.
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int *p1, *p2, **pp1, **pp2, intval;
...
int main()
{

...
p1 = &intval;
pp1 = &p1;

pp2 = pp1;
p2 = *pp2;
...
... = &pp2;
...

}

intval

pp2
(mask3)

p1
(mask2)

(mask1)

p2

pp1

(a) A sample C code (b) Points-to graph for the code

static unsigned int mask1, mask2, mask3;
int **p1 ptr, *p2, **pp1, ***pp2 ptr, *intval ptr, ...;
int main()
{ ...

(*p1 ptr) = intval ptr;
(*p1 ptr) = (int *)((unsigned int)(*p1 ptr) ˆ mask2);
pp1 = p1 ptr;
(*pp2 ptr) = pp1;
(*pp2 ptr) = (int **)((unsigned int)(*pp2 ptr) ˆ mask3);
p2 = (int *)((unsigned int)(*((int **)

((unsigned int)(*pp2 ptr) ˆ mask3))) ˆ mask2);
...

}
static void ( attribute (( constructor )) dsr init)()
{ ...

/* code to allocate memory for intval, p1 and pp2 using their
pointers intval ptr, p1 ptr and pp2 ptr respectively. */
...
dsr maskassign(mask1); dsr maskassign(mask2);
dsr maskassign(mask3);...

}

(c) Transformed code for the code in (a)

Fig. 3. A sample example illustrating basic DSR transformations

As a first step in the transformation of a program, we first perform pointer
analysis in order to determine masks associated with different data. Our current
implementation supports Steensgaard’s pointer analysis. One of the limitation
of our current implementation is that it is based on whole program analysis and
transformation. The whole program analysis approach requires a merged source
file. The CIL toolkit provides an option to automatically generate such a merged
file. Sometimes this kind of merging can fail due to type mismatch of variable
declarations present in different files. Such cases can be handled by manual
changes to the declarations. With some extra effort, our implementation can
be extended to a separate file compilation-based transformation approach. Even
with the current implementation approach, we have demonstrated its practicality
by transforming several “real-world” programs without any manual changes.
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In the second step, we generate the program’s points-to graph, from which we
then compute the equivalence classes needed for assigning random masks to data
variables. In the third step, we transform the code as per the transformations
described in the previous section.

The example shown in Figure 3 illustrates the above transformation steps. In
this example, variables p2 and pp1 correspond to non-overflow candidate objects,
which are not required to be masked due to our optimization. On the other
hand, variables intval, p1 and pp2 correspond to overflow candidate objects
because their addresses are taken. So we mask these variables, and for this we
respectively introduce variables mask1, mask2, and mask3 to store their masks.
Each of these mask variables is initialized with a different random value using
the macro __dsr_maskassign in the constructor function __dsr_init() that is
automatically invoked before the start of the execution in main(). Recall from
Section 2 that we need to allocate memory for overflow candidate objects in
different memory regions. For this to be possible, we access overflow candidate
objects with an extra level of indirection using pointers, e.g., a variable v is
accessed using (*v_ptr), where v_ptr is a pointer to v. In this example, we
introduce pointers intval_ptr, p1_ptr, and pp2_ptr to access intval, p1, and
pp2 respectively. The memory for these overflow candidate objects is allocated
in the initialization code present in __dsr_init(). Since the overflow candidate
objects in this example do not share masks, we allocate their memory in the
same region, in between two unmapped memory pages. As a result, overflows
from overflow candidate objects cannot corrupt non-overflow candidate objects.
Moreover, overflows among overflow candidate objects are detected because all
of them use different masks.

The statements are transformed as follows. If an overflow candidate variable
is assigned a value, the value is first masked and then stored in the memory; if
it is used in an expression, its masked value is unmasked before its use.

Now we discuss a few issues concerning the basic implementation approach.

3.1 Handling Overflows within Structures

According to C language specifications, overflows within structures are not con-
sidered as memory errors. However, attackers can potentially exploit such
overflows also. For instance, an overflow from an array field inside a structure
corrupting adjacent fields in the same structure may lead to an exploitable vul-
nerability. Thus, it is desirable to have some protection from these overflows.
Unfortunately, even bounds-checking detection techniques do not provide de-
fense against these types of overflows. ASR too fails to address this problem
due to the inherent limitation of not being able to randomize relative distances
between fields of a structure because of language semantics. DSR can be used
to provide some level of protection in this case. The basic idea is to use field-
sensitive points-to analysis so that we can assign different masks to different
fields of the same structure. However, our current implementation does not sup-
port field-sensitive points-to analysis. As a part of future enhancement, we plan
to implement Steensgaard’s points-to analysis [36] to handle field-sensitivity. The
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time complexity of this analysis, as reported in [36], is likely to be close to lin-
ear in the size of the program in practice. Hence, this enhancement would not
affect the scalability of our approach. Moreover, it does not increase runtime
performance overhead.

Library functions such as memcpy, memset and bzero, which operate on entire
structures, need a special transformation. For instance, we cannot allow bzero
to zero out all the fields of a structure. Instead it should assign each field a value
corresponding to its mask. This would require computing points-to set for pointer
arguments of these functions in a context-sensitive way (as if the functions are
inlined at their invocation point). As a result, the pointer arguments would most
likely point to specific type of data including structures and arrays. So if the data
pointed by an argument is a structure, we would use corresponding masks for
the individual fields of the structures using summarization functions.

3.2 Handling Variable Argument Functions

Variable argument functions need special handling. In effect, we treat them as
if they take an array (with some maximum size limit) as a parameter. This
effectively means that the same mask is assigned to all the parameters, and
if some of these parameters happen to be pointers, then all their targets get
assigned the same mask, and so on. However, the imprecision in resulting pointer
analysis can be addressed by analyzing such functions in a context-sensitive
manner. Our implementation currently does not support this.

3.3 Transformation of Libraries

A source-code based approach such as ours requires the source code for the
program as well as the libraries, as all of them need the transformation.

A few extra steps are required for handling shared libraries. Using the steps
described in Section 2, we would obtain points-to graphs for all the shared li-
braries and the main executable. Since these graphs could be partial, we need
to compute the global points-to graph. This could potentially lead to merging of
some equivalence classes of masks, which in turn can make an object in a shared
library an alias of another object from the executable or other shared libraries.
In such situation, mask values are needed to be shared across the executable and
the libraries.

A natural way to implement the above steps is to enhance the functionality
of the dynamic linker. For this, each binary object (an executable or a shared li-
brary) needs to maintain dynamic symbol information about the points-to graph,
which is a general yet an important piece of information that could be useful
to many program analysis and transformation techniques. In addition, the bi-
nary objects need storage for mask variables and also dynamic symbol infor-
mation about them. Using this information, at link-time, the dynamic linker
can compute the global points-to graph, and resolve the mask variables just like
it resolves other dynamic symbols. Additionally, it needs to initialize the mask
variables with random values.
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At times, source code may not be available for some libraries. Such libraries
cannot be directly used with our DSR technique. The standard approach for
dealing with this problem is to rely on summarization functions that capture
the effect of such external library functions.

Given the prototype nature of our implementation, we did not transform
shared libraries, and instead used the approach of summarization functions. For
the test programs used in our experiments, we needed to provide summarizations
for 52 glibc functions. In addition, we do not mask external variables, (i.e.,
shared library variables) and any internal variable that gets aliased with an
external variable, so as to make our technique work with untransformed libraries.

4 Evaluation

4.1 Functionality

We have implemented DSR technique as described in the previous section. The
implementation is robust enough to handle several “real-world” programs shown
in Figure 4. We verified that these programs worked correctly after the transfor-
mation. We also manually inspected the source code to ensure that the masking
and unmasking operations were performed on data accesses, and that variables
were grouped into regions guarded by unmapped pages as described earlier.

4.2 Runtime Overheads

Figure 4 shows the runtime overheads, when the original and the transformed
programs were compiled using gcc-3.2.2 with optimization flag -O2, and run
on a desktop running RedHat Linux 9.0 with 1.7 GHz Pentium IV processor and
512 MB RAM. Execution times were averaged over 10 runs.

Program Workload % Overhead

patch-1.06 Apply a 2 MB patch-file on a 9 MB file 4

tar-1.13.25 Create a tar file of a directory of size 141 MB 5

grep-2.5.1 Search a pattern in files of combined size 108 MB 7

ctags-5.6 Generate a tag file for a 17511-line C source code 11

gzip-1.1.3 Compress a 12 MB file 24

bc-1.06 Find factorial of 600 27

bison-1.35 Parse C++ grammar file 28

Average 15

Fig. 4. Runtime performance overhead introduced by transformations for DSR

For DSR transformations, the runtime overhead depends mainly on mem-
ory accesses that result in masking and unmasking operations. In I/O-intensive
programs, such as tar and patch, most of the execution time is spent in I/O op-
erations, and hence we see low overheads for such programs. On the other hand,
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CPU-intensive programs are likely to spend substantial part of the execution
time in performing memory accesses. That is why we observe higher overheads
for CPU-intensive programs. The average overhead is around 15%, which is a
bit higher than the overheads for ASR techniques. Nonetheless, DSR technique
is still practical and provides a stronger level of protection.

4.3 Analysis of Effectiveness Against Different Attacks

Effectiveness can be evaluated experimentally or analytically. Experimental eval-
uation involves running a set of well-known exploits against vulnerable programs,
and showing that our transformation stops these exploits. Instead, we have relied
on an analytical evaluation for the following reasons. First, exploits are usually
very fragile, and any small modification to the code, even if it they are not
designed for attack protection, will cause the exploit to fail. Clearly, with our
implementation, which moves objects around, the attacks would fail even if we
used a zero-valued mask in all cases. Modifying the exploit so that it works in
this base case is quite time-consuming, so we did not attempt this. Instead, we
rely on an analytical evaluation that argues why certain classes of existing ex-
ploitation techniques will fail against DSR; and estimate the success probability
of other attacks.

Stack buffer overflows. Memory for all the overflow candidate local variables
is allocated in a buffer stack or the heap. Typical buffer overflow attacks on
the stack target the data on the main stack, such as the return address and
the saved base pointer. These attacks will fail deterministically, since the buffer
and the target are in different memory regions, with guard pages in between.
Similarly, all attacks that attempt to corrupt non-aggregate local data, such as
integer or floating-point valued local variables, saved registers, and temporaries
will also fail.

Attacks that corrupt data stored in an overflow candidate variable by overflow-
ing another overflow candidate variable is possible if they are both in the same
memory region. However, such attacks have low probability of success (2−32)
because we ensure that objects with the same mask are allocated in different
memory region. As mentioned before, in our implementation, we could do this
without having to maintain a large number of buffer stacks. If this assumption
did not hold for some programs, then we could resort to moving those overflow
candidate variables to the heap, and falling back on the technique (and analysis
of effectiveness) as overflows in the heap.

Static buffer overflows. Static overflow candidate objects are separated from
static non-overflow candidate objects with inaccessible pages. So overflows in
static memory cannot be used for corrupting non-overflow candidate static data.

Overflows from a static overflow candidate object into another overflow can-
didate object (not necessarily a static object) that is allocated in a different
memory region are impossible due to the use of guard pages in between regions.
However, overflows within the same static data region are possible. For such
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overflows, since our implementation ensures that the masks for different vari-
ables within each region will be different, the probability of a successful data
corruption attack is reduced to 2−32. In our experiments, we needed less than
150 distinct memory regions in the static area.

Heap overflows. Heap overflows involve overwriting heap control data consist-
ing of two pointer-values appearing at the end of the target heap block (or at
the beginning of a subsequent block). This sort of overwrite is possible, but since
our technique would be using a mask for the contents of the heap block (which,
as pointed out earlier, is an overflow candidate data), whereas the heap-control
related pointer values would be in cleartext. As a result, the corruption has only
2−32 probability of succeeding.

Overflows from one heap block to the next are possible. If the two heap blocks
are masked with different masks, then the attack success probability is 2−32.
However, heap objects tend be large in numbers, and moreover, possible aliasing
may force us to assign the same mask to a large number of them. An important
point to be noted in this case is that the number of different memory regions
required for heap objects is a property of input to the program, rather than
the program itself. Hence we use a probabilistic approach, and distribute heap
objects randomly over a bounded number of different memory regions. Moreover,
it should be noted that inter-heap-block overflows corrupt the heap control data
in between, so the program may crash (due to the use of this corrupted data)
before the corrupted data is used by the program. Nevertheless, it is clear that
the success probability can be larger than 2−32. In practice, this is hard because
(a) heap allocations tend to be unpredictable as they are function of previous
computations performed and inputs processed, (b) the control data will also be
corrupted, and so it will likely be detected.

Format string attacks. Traditional format-string attacks make use the %n
directive to write the number of bytes printed so far, and require the attacker to
be able to specify the location for this write. Note that the attacker has control
only over the format string, which being an overflow candidate object does not
reside on the main stack. The location for the write is going to be a parameter,
which will reside on the main stack. Thus the attacker cannot control the target
into which the write will be performed, thus defeating traditional format-string
attacks.

Other ways of exploiting format string attacks may be possible. The attacker
may use %n to refer to a pointer value or an attacker-controlled integer value
that is already on the stack. Also, the attacker can use other format specifiers
such as %x and %d to print out the contents of the stack.

We point out that this weakness is shared with most existing defenses against
memory error exploits. Nonetheless, the best way to deal with format-string
attacks is to combine DSR with an efficient technique such as FormatGuard[16].

Relative address attacks based on integer overflows. Note that the base
address used in any relative address attack must correspond to an overflow can-
didate variable. There is a small probability that the target location overwritten
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by the attack will have been assigned the same mask as the one corresponding
to the base address. It is hard to predict this probability independent of the
program, as it is the same as the probability of possible aliasing between the
base address and the target address of the attack. In any case, relative-address
randomization of overflow candidate objects in DSR provides probabilistic pro-
tection against these attacks.

Attacks Targeting DSR. We discuss possible attacks targeted at DSR.

– Information leakage attack. Randomization based defenses are usually
vulnerable to information leakage attacks that leak the random values. For
instance, ASR is vulnerable to attack that leaks the values of pointers that
are stored on the stack or the heap. Interestingly, DSR is not susceptible
to this attack. This is because any attempt to read a pointer value will
automatically cause the mask associated with the pointer to be applied, i.e.,
the result of the read will be in plaintext rather than being in encrypted
form. Thus, information regarding the masks is not leaked.

– Brute force and guessing attacks. The probability calculations in the
previous sections indicate the difficulty of these attacks.

– Partial pointer overwrites. These attacks involve corruption of the lower
byte(s) of a pointer. Partial pointer overflows can decrease the attacker’s
work because there are only 256 possibilities for the LS byte. But these
vulnerabilities are difficult to find and exploit. Even when exploitable, the
target usually must be on the stack. In our implementation, since the main
stack does not contain overflow candidate variables, it becomes impossible to
use buffer overflows to effect partial overflow attack on stack-resident data.

5 Related Work

Runtime Guarding. These techniques transform a program to prevent corruption
of specific targets such as return addresses, function pointers, or other control
data. Techniques such as StackGuard [18], RAD [15], StackShield [5], Libverify [5]
and Libsafe [5], in one way or another, prevent undetected corruption of the
return address on the stack. ProPolice [22] additionally guards against corruption
of non-aggregate local data. FormatGuard [16] transforms source code to provide
protection from format-string attacks.

As above techniques provide only an attack-specific protection, attackers find
it very easy to discover other attack mechanisms for bypassing the protection.

Runtime Enforcement of Static Analysis Results. Static analysis based
intrusion detection techniques such as [38] were based on using a static analy-
sis to compute program control-flow, and enforcing this at runtime. However,
since enforcement was performed only on system call invocations, control-flow
hijack attacks were still possible. Control-flow integrity (CFI) [1] addressed this
weakness by monitoring all control-flow transfers, and ensuring that they were
to locations predicted by a static analysis. As a result, control-flow hijack at-
tacks are detected, but the technique does not detect data corruption attacks.



18 S. Bhatkar and R. Sekar

Data-flow integrity [12] addresses this weakness by enforcing statically analyzed
def-use relationships at runtime. However, it incurs much higher performance
overheads than CFI as well as DSR.

Write-integrity testing (WIT) [2] proposes a faster way to perform runtime
checking of validity of memory updates. Specifically, they use a static analysis
to identify all memory locations that can be written by an instruction, and
assign the same “color” to all these locations. This color is encoded into the
program text as a constant. At runtime, a global array is used to record the color
associated with each memory location. Before a memory write, WIT ensures
that the color associated with the write instruction matches the color of the
location that is written. Although developed independent of our work [8], the
techniques behind WIT share some similarities with DSR. In particular, their
color assignment algorithm is also based on alias analysis.

WIT reports lower overheads than DSR, but this is achieved by checking only
the write operations. In contrast, DSR addresses reads as well as writes, and
hence can address memory corruption attacks that may be based on out-of-
bounds reads. In terms of strength of protection, DSR and WIT are comparable
in the context of buffer overflows where the source and target objects are not
aliased. If they are aliased, then WIT can still offer deterministic protection
against typical buffer overflows that involve writing a contiguous (or closely
spaced) set of locations beyond the end of a buffer. DSR can also provide deter-
ministic protection in such cases, but its implementation technique for achieving
this, namely, the use of unwritable memory pages, does not scale well for heap
objects. However, WIT fails to provide any protection in the case of buffer over-
flows where the source and target objects are aliased and are far apart — this
happens often in the case of integer overflows. In contrast, DSR offers proba-
bilistic protection in this case due to its use of relative address randomization
as a second line of defense.

Runtime Bounds and Pointer Checking. Several techniques have been
developed that maintain, at runtime, metadata related to memory allocations
and pointers [4,26,30,34,41,20]. Pointer dereferences are then checked for va-
lidity against this metadata. While the techniques differ in terms of the range
of memory errors that they are able to detect, they all cover a broad enough
range to protect against most memory error exploits. As compared to the tech-
niques described in previous paragraph, these techniques tend to be more precise
since they rely on runtime techniques (rather than static analysis) for metadata-
tracking. However, this also translates to significant additional overheads.

Randomization Techniques. Our DSR technique is an instance of the broader
idea of introducing diversity in nonfunctional aspects of software, an idea first
suggested by Forrest et al. [23]. The basic idea is that the diversified programs
maintain the same functionality, but differ in their processing of erroneous in-
puts. As a result, different variants exhibit different behaviors when exposed
to the same exploit. In the context of memory error vulnerabilities, several re-
cent works have demonstrated the usefulness of introducing automated diversity
in the low level implementation details, such as memory layout [32,40,23,28],
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system calls [14], and instruction sets [27,6]. System call and instruction set ran-
domization techniques only protect against injected code attacks, but not from
return-to-libc (aka existing code) or data corruption attacks. On the other hand,
the techniques which randomize memory layout, popularly known as address
space randomization (ASR) techniques, provide protection against injected code
as well as data corruption attacks. ASR techniques that only perform absolute
address randomization [32,9] (AAR) don’t directly address buffer overflows, but
are still able to defeat most attacks as they rely on pointer corruption. ASR tech-
niques that augment AAR with relative address randomization (RAR) [10] are
effective against all buffer overflows, including those not involving pointer cor-
ruption. DieHard [7] and DieFast [31] approaches provide randomization-based
defense against memory corruption attacks involving heap objects.

Randomization techniques with relatively small range of randomization, e.g.,
PaX with its 16-bits of randomness in some memory regions, can be defeated
relatively quickly using guessing attacks [35]. As mentioned earlier, they are also
susceptible to information leakage attacks. Cox et al. [19] and Bruschi et al. [11]
have shown how process replication can be used to address these deficiencies, and
hence provide deterministic (rather than probabilistic) defense against certain
classes of memory exploits. However, they come with a significant overhead due
to the need to run two copies of the protected process. In contrast, DSR incurs
only modest overheads to mitigate guessing attacks (using a much larger range
of randomization) as well as information leakage attacks.

6 Conclusion

In this paper, we introduced a new randomization-based defense against mem-
ory error exploits. Unlike previous defenses such as instruction set randomization
that was effective only against injected code attacks, our DSR technique can de-
fend against emerging attacks that target security-critical data. Unlike address
space randomization, which is primarily effective against pointer corruption at-
tacks, DSR provides a high degree of protection from attacks that corrupt non-
pointer data. Moreover, it is not vulnerable to information leakage attacks. Finally,
it provides much higher entropy than existing ASR implementations, thus provid-
ing an effective defense from brute-force attacks.

We described the design and implementation of DSR in this paper. Our results
show that the technique has relatively low overheads. In addition to reducing the
likelihood of successful attacks to 2−32 in most cases, the technique also provides
deterministic protection against attacks such as stack-smashing, and traditional
format-string attacks. In future work, we expect to address some of the limitations
of current prototype, such as the inability to address intra-field overflows.
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Abstract. This paper focuses on defense mechanisms for cross-site scripting at-
tacks, the top threat on web applications today. It is believed that input validation
(or filtering) can effectively prevent XSS attacks on the server side. In this pa-
per, we discuss several recent real-world XSS attacks and analyze the reasons
for the failure of filtering mechanisms in defending these attacks. We conclude
that while filtering is useful as a first level of defense against XSS attacks, it is
ineffective in preventing several instances of attack, especially when user input
includes content-rich HTML. We then propose XSS-GUARD, a new framework
that is designed to be a prevention mechanism against XSS attacks on the server
side. XSS-GUARD works by dynamically learning the set of scripts that a web
application intends to create for any HTML request. Our approach also includes a
robust mechanism for identifying scripts at the server side and removes any script
in the output that is not intended by the web application. We discuss extensive ex-
perimental results that demonstrate the resilience of XSS-GUARD in preventing
a number of real-world XSS exploits.

Keywords: Cross-site scripting (XSS), Attack Prevention, Filtering, Security.

1 Introduction

The growth of JavaScript based client-side programming has given rise to several seri-
ous security problems related to web applications. The most notorious problem is cross
site scripting (XSS), cited as the topmost threat, accounting for nearly 30% of the re-
ported vulnerabilities in web applications today [6]. Web application worms such as
Samy [21] spread through these attacks, affecting millions of users worldwide. More
recently, XSS attacks have become vectors for a much broader class of attacks, and re-
searchers suggest that they can be used to create a distributed botnet without the need
for user involvement [5].

The problem of cross-site scripting results from JavaScript code that can be injected
into a document through untrusted input. A typical scenario is the following code in a
Java web application, that prints the supplied username on its output:

out.println("<P> Hello "+uname+"! Welcome</P>");

Unfortunately, this code is vulnerable to XSS attacks, as the input can contain script-
ing commands: e.g., <script>...stealCookie()...</script>. When such in-
jected code is executed in the client browser, it can result in stealing cookies, defacing
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the document or unauthorized submission of forms. We refer to such JavaScript code
as unauthorized code, to distinguish it from code that was authorized, i.e., inserted into
the HTTP response by the web application without being influenced by untrusted input.

Input validation is the most commonly employed defense against XSS attacks. In
the code of the web application, untrusted input is processed by a filtering module that
looks for scripting commands or meta-characters in untrusted input, and filters any such
content before these inputs get processed by the web application. Filtering can be used
to place constraints on input before they are processed by a web application (such as
“zip codes contain exactly five characters from the set [0-9]”). From a practical stand-
point, employing filters provides a first layer of defense against XSS attacks. However,
there are many scenarios where filtering is difficult to get right, especially when deal-
ing with arbitrary user input that could include content-rich HTML. In this case, every
character in the HTML character set is legal, which implies that the filter cannot re-
ject any individual character that may result in script content. Therefore, the filter has
to identify sequences of characters that may result in script content. Furthermore, the
filter has to “guess” how particular character sequences may appear to a browser. For in-
stance, some browsers typically ignore the “/” character and read the string <script/>
as a script tag, whereas this view may not be shared by a validation routine seeking to
remove script tags.

Other approaches that defend applications against attacks on the server side, such
as dynamic tainting, track the use of untrusted information by the application. They
further ensure that this untrusted information passes through a filter routine before it
is output by the web application. While they correctly track whether a filter routine is
called before untrusted information is output, they do not reason about the correctness
of employed filters, assuming the filtering is “done right”. (Some progress has been
made in reasoning about the correctness of filters in recent works [13,11], but these
works still do not address all the problems discussed in Section 2.)

In this paper, we present the results of a study that involved a large number of recent
real-world XSS attacks, and discuss the reasons for the failure of filtering mechanisms
used in the applications that were subject to these attacks. We present this study using
a generic example of a web application in Section 2.

We then propose a new framework called XSS-GUARD for detecting XSS attacks
on the server side. XSS-Guard works by discovering intentions of the web application,
and uses this in order to stave attacks. It rests mainly on two simple observations:

(a) web applications are written implicitly assuming benign inputs, and encode pro-
grammer intentions to achieve a certain HTML response on these inputs, and

(b) maliciously crafted inputs subvert the program into straying away from these in-
tentions, leading to a HTML response that leads to XSS-attacks.

Since intentions are implicit, we propose to dynamically elicit these intentions from
the web application during every run. In our approach, the main idea for discovering
intentions is to generate a shadow response for every (real) HTTP response generated
by the web application. The purpose behind generating the shadow response is to elicit
the intended set of authorized scripts that correspond to the HTTP response. Whenever
an HTTP response is generated by a web application, XSS-GUARD identifies the set
of scripts present in the (real) response. The process of identifying scripts in the real
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response involves robust identification techniques involving real world browser code.
XSS-GUARD then checks whether there is any script in this set that is not authorized
(i.e., not intended) by the web application. This is accomplished by using the shadow
response, which only contains scripts intended by the application. An unauthorized
script is an instance of XSS attack, and XSS-GUARD removes it from the response and
then sends the response to the client.

The key benefits of the XSS-GUARD approach are:

– Deployment friendly. Our approach does not require any significant level of human
involvement in terms of code changes to be applied for XSS defense. It is based
on a fully automated program transformation technique that removes the injected
scripts.

– Strong resilience. Our approach is highly resilient to some very subtle scenarios
that occur in XSS inputs, as illustrated by our comprehensive evaluation.

– Acceptable overheads. Our approach does not impose an undue burden on web
application performance.

This paper is organized as follows: In Section 2, we discuss several real-world examples
that challenge conventional filtering, especially in the context of legacy applications.
Section 3 starts with the overall design of XSS-GUARD followed by the technical details
behind our approach. Section 4 discusses a comprehensive evaluation of XSS-GUARD

on several metrics including attack detection, resilience and performance. Section 5 an-
alyzes contemporary XSS defenses and compares them with our approach. In Section 6
we conclude after a general discussion about future directions.

2 Challenges in Preventing XSS Attacks

We use an abstract example of a web application to discuss the challenges in preventing
XSS attacks. (This example has been modeled based on several real-world attack sce-
narios.) Fig. 1 depicts an arbitrary run of this application. The application accepts a set
of inputs (I1, I2,. . ., In). Each node in the graph of the application denotes a program
location Pi where the web application generates HTML. Each output statement con-
tributes to the HTTP response in sequence, which taken together, forms the web page
that constitutes the HTTP response. For the sake of brevity, the figure does not depict
other nodes in the web application that involve computation (these are abstracted along
the edges).

Two views of the generated HTML response from each output location Pi are shown:
one at the server side, based on the program locations where it was output from (on the
left), and the view at the browser (on the client). The scripts identified by the browser
are shown as S1 through S4.

Filtering. The web application in the Fig. 1 also includes filtering routines; the routine
F shown after the application reads inputs is an input validation function. In addition,
the routines f1, f2, . . . , fm shown in the figure are output sanitization functions; these
look for script commands in outputs being generated by each output statement, and
possibly sanitize them. In the rest of this section, using several examples, we argue that
these routines are not adequate in preventing several well-known types of XSS attacks.
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Fig. 1. Web application’s HTML response and a browser’s view of response

Browser view. As noted in the figure, the browser identifies the scripts and executes
them. It is important to note that the scripts S1 through S4 identified at the browser
are precisely those that will be executed when the page is viewed in the browser. The
browser cannot distinguish between scripts that were crafted by malicious input or
were intended by the web application in the response. Therefore, it simply executes
all scripts, and this can result in XSS attacks. The web-application could communicate
the set of intended scripts to a specially-equipped browser as suggested in BEEP [17],
but this approach has problems of scalability from the web application’s point of view;
every client user needs to have a copy of this specialized browser that can understand
this non-standard communication.

Output sanitization. Note that each of the filter functions fi can HTML-encode all the
output characters, so that the corresponding characters can be rendered by the browser.
This can prevent all XSS attacks since all the characters will be escaped and inter-
preted literally by the browser. For instance, the string <script> will be encoded to
&lt;script&gt;. However, this will disallow any HTML to be input by the user,
and will break web applications such as wikis and blogs as they render user-supplied
HTML.

2.1 Some XSS Attack Scenarios

Let us now consider in detail several scenarios outlined in the Fig. 1. We consider the
HTTP response both from the web application’s and browser’s points of view.

1. Authorized Scripts. The web application may output content that did not depend
on user input in any fashion, and a browser identifies the script content in this
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output. This is the scenario depicted as script S1 in Fig. 1. Since this behavior
(script execution) was intended by the application, the browser can be allowed to
execute S1.

2. Unauthorized scripts. The web application may write user input (or content derived
from it) in its output. This is depicted by script S2 identified by the browser. This
script may appear in the output either because there was no filter function, or it
failed to identify the injected script in the input. Note that there is a large set of
vectors for XSS; there are several possible HTML entities that can be used to embed
script content (1) tags and URI schemes (such as <script> and javascript:)
(2) tag attributes such as src, background, etc., and (3) event handlers such as
onload, onclick etc. (at least 94 event handlers reported [4]).

3. Scripts resulting from multiple output locations. A script may result from multiple
output locations in a web application, such as the script S3 identified by the browser.
In this case, a single filter function (say f2 or f3) may not be sufficient if it looks for
scripting commands, as injected input may be split across these output statements.
For instance, a simple splitting of a prohibited keyword into innerH and TML...

in two output locations may appear as an innerHTML keyword in the final output
on the browser.

4. Content in existing execution environment. Most XSS attack prevention techniques
target identifying execution environments such as <script> tags. However, script
content S4 (which may be an attack) in our example is constructed by making use
of an existing execution environment. This is an example of a XSS-locator based at-
tack [4], where user input is sandwiched between existing (authorized) script code.
A simple concrete example that illustrates this is the following code: <SCRIPT>var
a=$ENV STRING;</SCRIPT> which embeds an environment variable in an exist-
ing (authorized) <script> environment. In this case, a filter such as f4 that relies
on locating scripting content does not help. A successful injection in this context
can make use of any JavaScript construct that allows execution of arbitrary com-
mands. For instance, the Samy MySpace Worm [21] introduced keywords prohib-
ited by the filters (innerHTML) through JavaScript code that resulted the output at
the client end (eval(‘inner’ + ‘HTML’)). It is hard to isolate and filter input
that builds such constructs, without understanding the syntactical context in which
they are used.

The above examples illustrates why filtering is hard to get right, especially in the
presence of HTML input. Furthermore, an existing exploit can be obfuscated to avoid
detection through filtering. Such obfuscation can be achieved by encoding it in various
ways - UTF-8, HEX, foreign languages etc. Such encoding can even be provided on-the-
fly and filters have to cope up with such dynamic scenarios.1 When such encodings can
be set dynamically in the presence of other factors listed above, it is difficult for filtering
techniques to identify script content. Static analysis techniques to detect sanitization
violations will fail to detect script content that is injected through these encodings.

1 A typical instance is web applications that provide response to natural language query requests.
Typically these allow the end user to make use of a dynamic parameter to specify the expected
character set for the response. For instance, Google search queries take ie and oe parameters
that specify the input encoding and output encodings respectively.
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(i) Web Application

String uName =
request.getParameter("uName");

out.println("<html><body>");
out.println("<script>f()</script>");
out.println("Hi " + uName + "!");
if(uName == "admin")

out.print("<script>Admin-script()");
else

out.print("<script>Non-Admin-script()");
out.println("</script>");
out.println("</body></html>");

(ii) Benign Access, uName = Alan

1. <html><body>
2. <script>f()</script>
3. Hi Alan!
4. <script>Non-Admin-script()</script>
5. </body></html>

(iii) Real Page : uName exploited

1. <html><body>
2. <script>f()</script>
3. Hi <script>evil();</script>!
4. <script>Non-Admin-script()</script>
5. </body></html>

Fig. 2. Example server side application and generated HTML pages

Summarizing, the salient points from this section are:

1. Filtering is difficult to get right in the presence of user input that includes HTML.
2. The output of a web application must be analyzed in its entirety to identify script

content.
3. A robust mechanism to identify script content is needed, as there are a myriad of

ways to encode the unauthorized script content that may escape filters but may
appear on the client browser.

Furthermore, from a usability and deployment point of view, any proposed solution
must allow users to specify harmless (without scripts) HTML and must be easy to de-
ploy. The solution discussed in the next section satisfies all the above requirements.

3 Our Approach

Objective. The objective of our approach is to prevent unauthorized script content from
being output on the response from the server side. We want to detect any malicious
scriptable content that may go undetected through any input filtering mechanism present
in the web application code.

The central theme of the XSS injection attacks is to introduce script code that would
perform malicious operations, instead of the operations that were intended by the web
application. A web application is written by a programmer implicitly assuming benign
inputs, and encode programmer intentions to output a particular web page on these
inputs. The presence of an unauthorized script in the output, which will be executed by
the browser is an example of a deviation from the web application’s intentions.

The key idea in our approach is to learn the intention of the web application while
creating the HTTP response page. This is done through shadow pages, which are gener-
ated every time a HTTP response page is generated. These pages are similar to the real
HTTP responses returned by the web application with mainly one crucial difference:
they only retain the (authorized) scripts that were intended by the web application to be
included, and do not contain any injected scripts.

Given the real and shadow pages, one can compare the script contents present in
the real page with web-application intended contents, present in the shadow page. Any
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Fig. 3. The XSS-GUARD server side defense approach

“difference” detected here indicates a deviation from the web application’s intentions,
and therefore signals an attack.

As a running example, consider the code snippet of a simple web application given
in Fig. 2 (i). This code embeds the user specified name and generates Admin-script
/ Non-Admin-script based on whether the user is admin. Notice that the parameter
"uName" is vulnerable to injection and can be exploited by specifying malicious values.
Fig. 2 (ii) and (iii) show responses generated for a benign user uName=Alan, and for a
malicious user name uName=<script>evil();</script>, respectively.

Conceptually, Fig. 2 (ii) is a shadow page (contains only the intended scripts for a
non-admin user - f(), Non-Admin-script()) for the response shown in part (iii).
The injected attack at line 3 in part (iii), has no equivalent script at line 3 of the shadow
page part(ii), and presents an intuitive example of attack detection in our approach.

Fig. 3 depicts the block level architecture of our approach. In the pre-deployment
view, a web application is retrofitted (step A) through an automated transformation to
facilitate generation of shadow pages and then deployed (step B) in place of the original
application. In the post deployment view for any HTTP request received (step 1) by
the web application, the instrumented application generates (step 2) a shadow page
corresponding to the actual HTTP response (real page). The real and shadow pages are
compared (step 3) for equivalence of script contents and any attacks found in the real
page are eliminated. The modified HTTP response page is sent (step 4) to the client.

In the following sections, we elaborate the mechanisms used by XSS-GUARD for
robust script identification and comparison.

3.1 A Generic Mechanism for Identifying Script Content

We want to identify the set of scripts present in the real page in order to check if they
are intended by the web application. In order to do this, we need to first identify the set
of all scripts in the real page.
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Fig. 4. High level content flow in the Firefox browser

As shown in Fig. 1, the set of scripts executed at the client are precisely those that
have been identified by the browser. A browser has the complete context to decide
whether a sequence of HTML entities will invoke a script. Even if the input is based
on a specific encoding, browser sees all encoded input “in-the-clear” and therefore can
perform sound identification of all script content in a HTML page. In other words, a
real browser is a natural candidate for identifying all the scripts present in a web page.

Our approach therefore makes use of a real-world browser’s code base for precise iden-
tification of scripts in a web page. The portion of the browser code base that is of interest
to us is the one responsible for tokenizing HTML content and parsing it, and ultimately
invoking the JavaScript interpreter on script content. To this end, we analyzed the script
content identification schemes employed by one of the popular web browsers - Firefox,
and describe our customizations of Firefox components that identify script content.

Firefox mechanisms to identify script content
Fig. 4 depicts a high level diagram of the content flow in Firefox with regards to script
identification. We ignore any browser component that is not relevant to script iden-
tification, and describe the behavior at an abstract level, thus making the discussion
applicable to other browsers in general.

The component scanner identifies character boundaries, and the tokenizer aggregates
them into lexical tokens. The results of this lexical analysis is given to a content sink, a
component responsible for HTML-tag specific browser action. For instance, when the
content sink encounters a tag that has a src attribute, it calls the networking component
that downloads additional data that is pointed to by the src attribute. Similarly, when a
<script> tag is encountered, the content sink calls the JavaScript interpreter.

We then further studied the browser code base to identify when the JavaScript inter-
preter is called from a content sink. The browser invokes the JavaScript interpreter in
three distinctive situations:

Entities causing external resource downloads. These are the tags / attributes desig-
nated by the HTML specification to embed external resources in HTML pages. Such
entities can be used to directly or indirectly introduce script content in the embedding
HTML pages. An example is <script src=...>, which directly introduces script
contents, whereas <embed src=xss.swf> can indirectly introduce script contents.

Inlined script content and event handlers. These tags / attributes are designated by
the HTML specification to introduce inlined scripts and event handlers. Examples are
<script> which introduces script code, or <body onload=...> where the script
code corresponding to onload is executed when this entity is loaded in the browser.
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URI Schemes that can have scripts. The above two techniques are based on the
HTML specification and thus provide exact knowledge of the tags / attributes utiliz-
ing these techniques. However, script content based on URI schemes present other sub-
tle ways of embedding script content in non-obvious contexts. These schemes are the
mechanisms by which an HTML entity can direct the browser to perform special pro-
cessing. Browsers implement protocol handlers to cater to these special processing re-
quests. An example is an image tag <img src="javascript:script"> that makes
use of javascript URI scheme and directs the browser to execute the specified script.

Using a custom content sink to identify script content
An important inference from our study of the Firefox identification mechanisms is that
the content sink phase possesses sufficient information to enable identification of all
script content. Also, for above purpose, the rest of the components in a typical browser
stack are not required. Hence, a code stack from the Firefox browser comprising of
the scanner, tokenizer and content sink would result in a much smaller script identi-
fier that is sufficient for our purposes. The XSS-GUARD framework makes use of this
lightweight code stack from the Firefox code base to perform precise identification.

We extended the content sink implementation in Firefox to record the identified
script content. Our implementation handles all the three kinds of script content dis-
cussed above. Overall, our identification of the script content at the content sink com-
ponent is quite robust. Also, re-using components such as the tokenizer and scanner
from an existing browsers’ stack provides this scheme immunity against various en-
coding schemes and browser quirks. Moreover, being a part of actual browser stack,
the tokenizer obviates the need for identifying tokens / keywords through error prone
algorithms.

Incorporating behaviors of other browsers. Utilizing a single browser’s identifica-
tion mechanisms would not be sufficient to identify script constructs specific to other
browsers. This can be remedied by selectively incorporating other browser specific
mechanisms. For this purpose, we built a custom content sink based on Firefox browser
stack and then extended its identification to encompass behaviors specific to other
browsers. For instance, Firefox only checks for 38 event names, but our custom content
sink supports an extended list comprising of 94 event names from [4] that are supported
by other browsers. More details of our specific extensions are provided in the Section 4.

3.2 Shadow Pages: Computing Web Application Intent

A web application is written implicitly assuming benign inputs (with filtering to remove
malicious input). It encodes programmer intentions to output a particular web page on
these inputs. The XSS-GUARD approach is to capture these intentions using shadow
pages.

Naturally, the shadow page will differ according to the input provided to the web ap-
plication; a shadow page is therefore defined for a particular run of the web application.
Formally, a shadow page of a web application P on any input u is the output response
of the web application on some benign input v, on which P traverses the same path as
it traverses on u.
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(i) Transformed Web Application : real shadow page

String uName =
request.getParameter("uName");

String uName_c = benginCandidate(uName);
StringBuffer re = ""; // real response
StringBuffer sh = ""; // shadow response
re.append("<html><body>");
sh.append("<html><body>");
re.append("<script>f()</script>");
sh.append("<script>f()</script>");
re.append("Hi " + uName + "!\n");
sh.append("Hi " + uName_c + "!\n");
if(uName == "admin"){

re.append("<script>Admin-script()");
sh.append("<script>Admin-script()");

}
else{

re.append("<script>Non-Admin-script()");
sh.append("<script>Non-Admin-script()");

}
re.append("</script>\n");
sh.append("</script>\n");
re.append("</body></html>");
sh.append("</body></html>");
re = XSS-PREVENT(re, sh);
out.print(re);

(ii) Real page for benign Access, uName = Alan

1. <html><body>
2. <script>f()</script>
3. Hi Alan!
4. <script>Non-Admin-script()</script>
5. </body></html>

(iii) Shadow page for benign Access, uName = Alan

1. <html><body>
2. <script>f()</script>
3. Hi aaaa!
4. <script>Non-Admin-script()</script>
5. </body></html>

(iv) Real page : uName exploited

1. <html><body>f
2. <script>f()</script>
3. Hi <script>evil();</script>!
4. <script>Non-Admin-script()</script>
5. </body></html>

(v) Shadow page : uName exploited

1. <html><body>
2. <script>f()</script>
3. Hi aaaaaaaaaaaaaaaaaaaaaaaa!
4. <script>Non-Admin-script()</script>
5. </body></html>

Fig. 5. Transformed running example and generated HTML pages (real and shadow)

Finding such benign inputs v, in general, is undecidable. We avoid this problem
by using some manifestly benign inputs (such as a string of a’s), and force the web
application to act on these benign inputs along the same control path dictated by these
real inputs. This technique has been used to successfully defend SQL injection attacks
in our previous work [8].

More specifically, in order to construct the shadow page, we use explicitly benign
user inputs; those that do not contain any meta characters of the scripting language.
As these inputs are manifestly benign and do not contain any script content, the corre-
sponding web application output will be free of injected script content, while retaining
content authorized by the web application. Hence, an HTTP request with explicitly be-
nign inputs will result in an exploit free HTML response from the web application.

We automatically transform the original web application to generate the shadow re-
sponse pages apart from the real response pages. We refer the readers to our previous
work [8] for a comprehensive treatment of this program transformation, and provide the
key ideas here to make the discussion self-contained.

– For every string variable v in the program, we add a variable vc that denotes its
shadow. When v is initialized from the user input, vc is initialized with an explicitly
benign value of the same length as v. If v is initialized by the program, vc is also
initialized with the same value.

– For every program instruction on v, our transformed program performs the same
operation on the shadow variable vc. Departure from these mirrored operations
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comes in handling conditionals, where the shadow computation needs to be forced
along the path dictated by the real inputs. Therefore, the logic for path-selection in
the program is not transformed and acts on the real inputs.

– Each output generating statement (writing output to the client), is replaced by ap-
pending the arguments to a buffer. This is done both for the real and the shadow
values.

– After the last write operation, transformation adds invocation to a method respon-
sible for detecting and disabling the XSS attacks.

The transformed web application for the running example is shown in the Fig. 5. It
also shows real and shadow pages generated by this transformed application. The real
and the shadow pages are stored in variables re and sh respectively and follow the
transformation outlined previously. On line 23 in the transformed application real and
shadow pages are passed on to a routine XSS-PREVENT that identifies and removes all
the injected attacks and returns a retrofitted page, which is then returned to the client.

The generated shadow pages possess the following properties:

– The set of scripts in the shadow page is precisely that intended for the control path
dictated by the real inputs. This is by virtue of a transformation that “mirrors” the
computation on manifestly benign values on the same control path dictated by the
real inputs. More specifically, when the user input is admin, the shadow page will
contain the scripts f and Admin-script (and only those), and for a non-admin
user, the shadow page will only contain the scripts f and Non-Admin-script.

– The transformation maintains the length of the shadow page to be the same as the
real page. This is true as long as the functions defined in the web application are
length preserving [8], a criterion satisfied by all the functions in the Java Standard
library string manipulation suite. As a result the shadow and real pages are of the
same length. Moreover, the offsets of the script content in the real and shadow pages
are the same e.g., Non-Admin-script start and end offsets are same in both the
real and the shadow pages.

3.3 Distinguishing XSS Attack Instances from Authorized Scripts

Equipped with the knowledge of script content in the real page and corresponding in-
tended script content in the shadow page, our approach asks the following two questions
about each script content identified in the real page:

1. Web application intent mining. For each identified script content, did the
web application intend to create it?

2. Script checking. If so, are the actual script content “equivalent” to the ap-
plication intended script content?

To see consider our example Fig. 5 (iv) (attack), on reaching line 3, the script identifier
described in the previous section will reach a state that will identify the content as script.
Whereas, in corresponding shadow page Fig. 5 (v) line 3, the parser will not identify
any script content.
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Benign case XSS attack
User Input uName = John uName = ";evil();c="
Real Script Content var name = "John"; var name = ""; evil(); c = "";
Shadow Script Content var name = "aaaa"; var name = "aaaaaaaaaaaaaaaa";

Fig. 6. Syntactically different content are generated with benign and hostile user inputs

If the identified script content and the web application intended content are not
“equivalent”, it is an XSS attack instance. We elaborate on the notion of equivalence
below.

All identified script content (including attacks) originate from one of the following
three categories of web application action:

1. Created without untrusted inputs - script content that are created without any influ-
ence of the untrusted inputs, and hence are benign. The script created on line 2 of
Fig. 5 (ii), provides an example of such content creation. Interestingly, correspond-
ing shadow page also contains the exact same script at the same offsets as the real
page, and a direct content comparison suffices to establish their equivalence.

2. Created by embedding untrusted inputs - script content that embed untrusted inputs,
and depending on the user inputs may be benign or hostile. The code snippet pre-
sented in Fig. 6 uses the untrusted data to initialize a variable in the script. Looking
at the corresponding shadow script confirms that unlike the previous case, directly
comparing the content does not work here.

3. Not intended by the web application - script content not intended by the web appli-
cation, and hence are the attack instances. The script found on line 3 of Fig. 5 (iv),
is such an instance. Here as well, a direct comparison with shadow content does not
work.

Although we cannot check equivalence of last two cases mentioned above by directly
comparing the content, both these cases share a well researched insight about injection
attacks - a successful injection attack changes the syntactical structure of the exploited
entity [18]. In case 3 above, an adversary injects script content in a context where it is
not expected. Whereas, in case 2, the main goal of an attacker is to perform semantically
different operations through the use of malicious input. Hence the syntactical structure
of the real script generated with hostile user inputs, would be different, when compared
to corresponding shadow script.

Based on the above discussion, we compare the (JavaScript) syntax structure of script
elements, in absence of an exact match in the content.

JavaScript parse tree comparison details. To establish syntactical structure equiva-
lence, we compare the JavaScript parse tree structures of the real and shadow scripts.
However, a straightforward comparison of parse trees would cause false negatives e.g.,
parse trees for a = b; and c = d; are same. We compare the parse trees such that
their structures are same along with an exact match of lexical entities - including the
JavaScript comments, variable names and operators, and function names. String literals
are not compared literally; in this case, we check if they have same lexical token value.
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An exception to this rule for string literals arises when strings are used as arguments
to functions such as document.write, when we demand exact equality, as demands a
match in lexical token values will allow an attack to succeed.

Filtering out hostile script content. Any identified script content that fails the equiva-
lence check (exact content match or parse tree comparison), is marked as an XSS attack
instance. As we precisely know the offsets of the script content in the real page, such
non-conforming content is replaced with explicitly benign values. The script content
evil(); found in the real page of Fig. 5 (iv) fails to match due to the parse tree com-
parison. As a result, evil(); is identified as an XSS attack and is replaced with the
shadow counterpart aaaaaaa.

Conditional Copying Procedures. There are a few instances where our approach fails
and requires user involvement. Consider the following code from a routine that simply
copies a character x to y using the following code:

if x=’a’ then y=’a’
else if x=’b’ then y=’b’
else if ...

We can extend the above routine to copy a string x to a string y, iterating through each
character in the input by matching the correct conditional. Let us call this a conditional-
copy function. If the web application has such a function, then our candidate evaluation
technique will copy a user-input string <script> to the shadow page, while completely
ignoring its candidate value (of a string of a’s). This is one example of a case our
approach fails to protect filtering, and is in fact an example where every known server-
side technique against XSS defense will fail, including dynamic tainting.

The above example is simple but contrived, however there are practical examples of
such “table-lookup” code. One instance we encountered is charset-decoding, where ev-
ery character in a particular character set is decoded using a similar table lookup. Here
too, our approach and dynamic tainting will fail. In case of our approach and tainting,
the information about untrusted input is lost due to the conditional-copy of one char-
acter to another. Our solution for handling these functions is to include (user supplied)
summarization functions, that summarize the effect of these functions and preserve the
shadow values. For instance, the copy function given above has a summarization func-
tion that will simply return the candidate string instead of the real string as its return
value.

Implementation. Our web application transformation is for Java / JSP applications.
The program transformation to enable the shadow page generation, is implemented in
Java SOOT optimization framework [2]. For the script content identification module,
we implemented a custom content sink phase that used scanner and tokenizer from
the Firefox browser. The HTML tokenizer / scanner modules are modified to generate
the offsets for identified content. For the equivalence check, we leveraged the Firefox
SpiderMonkey engine’s parse tree creation for JavaScripts. We added support to create
a flat string representation of these parse trees for comparison purposes.
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4 Experimental Evaluation

Experimental Setup. Our experimental setup for evaluating attacks consisted of a server
(1GB RAM, 1.66 GHz dual core processor) and a client (2GB RAM, 2.0 GHz dual core
processor) both running Ubuntu OS and connected over the same Ethernet network.
We deployed the original and XSS-GUARD protected applications under separate but
identically configured Apache Tomcat servers.

CVE Program Version XSS Attack Description Detection

CVE-2007-5120 JSPWiki 2.4.103 via group name etc. Success
CVE-2007-5121 JSPWiki 2.4.103 via redirect parameter Success

CVE-2007-2450
Tomcat Html Manager 6.0.13 via name

to html/upload option Success

CVE-2007-3386
Tomcat Host Manager 6.0.13 via aliases to

html/add option Success
CVE-2007-3383 Tomcat SendMail App 4.1.31 via from field Success
CVE-2007-3384 Tomcat Cookie App 3.3.2 via name/value fields Success
CVE-2007-2449 Tomcat Snoop App 6.0.4 via HTTP method argument Success
CVE-2006-7196 Tomcat Calendar App 4.1.31 via time parameter Success

Fig. 7. The real XSS exploits used in effectiveness evaluation

4.1 Effectiveness Evaluation

One of our objectives was to evaluate the effectiveness of the XSS-GUARD approach
against the real-world attacks. Since our framework is targeted towards Java applica-
tions, we analyzed the CVE repository [20] and chose the JSP / Java based applica-
tions that had reported vulnerabilities in 2007. In all, we chose seven such applications:
JSPWiki, Tomcat HTML Manager, Tomcat Host Manager and Tomcat example web
applications (Cookie, SendMail, Calendar and Snoop). These applications were diverse
in sizes and complexity - ranging from a large and complex Wiki engine to small and
simple example web applications. Below, we discuss the nature of these exploits and
our experience in evaluating the XSS-GUARD approach against them.

JSPWiki (CVE-2007-5120, CVE-2007-5121). The JSPWiki engine facilitates a collec-
tive privilege management by creating groups of users. Unfortunately, the group cre-
ation process is vulnerable to XSS attacks. On presenting malformed group names,
such as those containing characters that are forbidden by the filter in JSPWiki e.g., <,
>, JSPWiki responds with an error message which embeds the malformed group name
verbatim, thus making way for XSS exploits.

Tomcat HTML Manager (CVE-2007-2450, CVE-2007-3386). For deploying new web
applications, Tomcat has a built-in application called Manager that accepts a WAR (Web
Archive) file name from the user. In this vulnerability, an error message is shown with
the user specified WAR file name if it does not end with a .war extension. The following
code snippet provides a sample exploit code -
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<form action="http://server/manager/html/upload" method="post">
<input TYPE="hidden" NAME=’deployWar";

filename="<script>alert(&#39&#120&#115&#115&#39)</script>"
exploit code based on: http://www.securityfocus.com

This exploit circumvents an input restriction (quotes disallowed), by partially en-
coding the exploit - alert(’xss’) as alert(&#39&#120&#115&#115&#39).
Our approach is resilient to alternate encodings as the HTML parser used for content
identification receives all data after being decoded.

Tomcat Web Applications (CVE-2007-(3383, 3384, 2449, 7196)). In all the previous
cases, vulnerable applications display user inputs in their HTTP responses. The Send-
Mail web application is different. It accepts the message subject, recipient and email
body from the user and sends an email to the recipient. This application does not dis-
play the user data in any HTTP response. However, when from field contains a malicious
email address, an external class javax.mail.internet.AddressException raises
an exception, which generates a stack trace. The SendMail subsequently displays this
stack trace, which contains the malicious from field. Such exceptional cases are typi-
cally not checked by the input filters, and illustrates the need for dynamic protection
mechanisms such as ours.

Attack evaluation summary. Our solution successfully defended all 8 exploits men-
tioned above. This demonstrates that the XSS-GUARD can be used successfully to
safeguard the real world applications against XSS exploits.

4.2 A Comprehensive Evaluation of Resilience

To evaluate the resilience of XSS-GUARD we selected RSnake CheatSheet [4], a col-
lection of 92 unique exploits based on different attack vectors to evade the server side
filters. Many of these exploits are quite subtle, and explore a significant portion of the
attack surface. In our evaluation, we focused on 36 out of the 92 RSnake cheat sheet
exploits that are applicable to the Firefox. Out of 92, four exploits were not applicable
- SSI, PHP, one does not introduce scripts and one exploit could not be reproduced. We
evaluated the remainder of 32 exploits in our experiments. These exploits are classified
into various categories, for brevity we only mention a few interesting cases here below.

XSS exploits based on Firefox quirks. Exploits based on this vector rely on the
“ad-hoc(quirk)” behavior of the Firefox HTML parser e.g., only the Firefox executes -
<SCRIPT/XSS SRC="http://evil/e.js"></SCRIPT>. Note that the filters obliv-
ious to this quirk will miss out such attacks. As our approach uses the Firefox HTML
parser, we were able to identify these tags without any special handling.

XSS Vector embedded in the Flash object. This vector embeds the exploit in the Ac-
tionScript of a Flash object, which invokes client side JavaScript interpreter when ren-
dered. When this exploit requires exploit code to embed the flash object, our approach
disallows it. However, if the exploit is embedded in a Flash object included by the web
application, our technique cannot prevent it.



38 P. Bisht and V.N. Venkatakrishnan

XSS exploit vector based on a pre-existing execution environment. This vector is use-
ful in situations where user input is added to a existing execution environment e.g.,
between <script> and </script> tags. This poses additional difficulties for filters.
In our case such attempts are prevented by script parse tree comparison as such vectors
cause the JavaScript parse tree structures to vary.

XSS exploit vector based on self generating scripts. In this interesting vector the pro-
hibited keywords or constructs may not even appear in the exploits at the server side, but
dynamically generated at the client. Variations of this scheme were used in the MySpace
Samy worm which constructed the prohibited keyword innerHTML on the client side
by using "eval(’inne’ + ’rHTML’)". However, such attacks require script code
and are disallowed by XSS-GUARD.

Summary. We used vulnerable JSPWiki application from CVE to recreate all the 32
applicable exploits of the cheat sheet. We then tested these exploits on the XSS-GUARD

protected JSPWiki application, which was able to defend all. The successful defense of
several subtle attacks demonstrates that the XSS-GUARD approach is highly resilient.

4.3 Performance

We conducted another set of experiments to evaluate acceptability of our solution in
terms of performance overheads. We measured the browser end response times us-
ing benchmarking tool JMeter [7] for the original and the XSS-GUARD protected
applications.

The performance overheads ranged from 5% to 24%. The least overhead resulted
for the SendMail application (response page 266B, 2 scriptable attributes). The Tomcat
HTML Manager application incurred the highest overhead in terms of the response time
(response page 12.75KB, 67 scriptable entities).

To assess the scalability of our approach to safeguard widely accessed websites, we
analyzed one level GET page responses (without downloading embedded resources) of
the ten most accessed websites in the United States [1]. The largest page response was
75KB (www.youtube.com), four were in the range of 32-50KB and rest all were less
than 12KB. Based on this data we created a web application that generated response
pages of different sizes (1KB to 75KB). We then transformed this web application with
XSS-GUARD and measured the response times for original and guarded application for
varying response sizes. Overheads incurred were reasonably moderate (2.8% - 13.64%).

To evaluate the impact of JavaScript parse tree comparisons on the performance, we
enabled above application to also generate varying number of scripts with embedded
user inputs. For 1-5 scripts in a 20KB response page, overheads varied in the range of
37%-42%. As mentioned earlier, the JavaScript parse tree comparison is needed only
rarely (in presence of attacks or scripts that embed user inputs). We did not encounter
any such case while measuring the performance of the applications from the CVE.

This extensive performance analysis demonstrates that this approach has acceptable
overheads in real world situations. These numbers are indicative of the worst case per-
formance of our approach. In our experiments client and server were connected over the
same Ethernet and hence the impact of network latency, that dominates response time,



XSS-GUARD: Precise Dynamic Prevention of Cross-Site Scripting Attacks 39

is negligible. We believe that the overheads in a real world deployment of our solution
would be significantly less than the reported numbers here.

4.4 Verifying Safe-Passage of Benign HTML Tags in Untrusted Contents

Web applications such as Wikis and Blogs allow end user to input HTML. This is highly
desirable as it allows users to format their input data using HTML tags. We also wanted
to study the possibility of our solution working smoothly with applications that allow
selective HTML input.

To understand the degree of freedom granted to the users in specifying HTML, we
analyzed several Wiki / blog applications (Pebble, Drupal, Plone, Geeklog, JSPWiki,
JChatBox)2 that allow a limited set of HTML entities to pass through. We also analyzed
the HTML specification 4.01 and identified following entities to be allowable - text,
lists, tables, links, alignment, font styles, and horizontal rules. We compiled these into
a comprehensive test suite consisting of benign tags and attributes.

Equipped with above test suite, we decided to assess any loss of functionality of
the XSS-GUARD protected applications in the presence and absence of the selective
HTML filters.

XSS-GUARD in the presence of HTML filters. For co-existence evaluation we chose
the selective HTML filtering mechanisms employed by the following two applications:

– Pebble: filters allow limited / no HTML, and strip the <script> tags.
– JChatBox: filters forbid all HTML, and encode the URLs with <a> tags.

We modified the Tomcat Calendar application to process the user inputs with above
filters and then transformed it using XSS-GUARD. For JChatBox filter, XSS-GUARD

allowed the filter created <a> tags and all the escaped HTML to pass through and
echoed the same behavior for Pebble filters. However, the script filter allowed the XSS
attacks to pass through e.g., <script>nada</script><script src=URL> resulted
in <script src=URL>. This attack, however, was caught by the XSS-GUARD and
removed from the response page.

In absence of filters, we used the XSS-GUARD protected Tomcat calendar applica-
tion and verified that all the entities listed in our testbed were allowed in user inputs.
These experiments demonstrate usefulness of layering XSS-GUARD protection on top
of the existing filtering mechanisms. The XSS-GUARD protected applications do not
forbid benign HTML allowed by selective filtering mechanisms, but are able to prevent
any attacks missed by the filters. We also note that XSS-GUARD allows a rich set of
benign HTML thus allowing users to input content rich HTML input.

4.5 Discussion

As the script identification in the current implementation of the XSS-GUARD is based
on components from the Firefox browser family, it does not identify all script contents

2 http://pebble.sourceforge.net, http://drupal.org, http://plone.org, http://www.geeklog.net,
http://www.javazoom.net/jzservlets/jchatbox/jchatbox.html
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based on ’quirks’ specific to other browsers (say Internet Explorer). We tested our cur-
rent implementation against 56 exploits from XSS cheatsheet that were based on quirks
specific to non-Firefox browsers; XSS-GUARD defended 35 out of these 56 exploits.
However, to uniformly identify scripts across the browser families a “universal” parser
is required.

– To build a browser independent URI scheme identification, the custom content sink
could unify identification of schemes implemented in different browsers.

– The custom content sink could be modified to identify and parse URI schemes
specific to other browsers e.g., <img src="vbscript:xss">.

– If the quirk is based on the tokenization process specific to a browser family, uni-
versal parser could handle it by incorporating necessary changes in it’s tokenization
process.

Attacks specific to other browsers. XSS-GUARD may produce a different out-
put page when an attack specific to a browser is attempted. For instance, <img

src=javascript:xss> is an XSS vector for Internet Explorer (IE), but is not a valid
attack vector for Firefox, which simply ignores the javascript src attribute for image
URLs. Disabling this exploit code does not impact Firefox user agents, as XSS-GUARD

results in an output page with a broken image link, when viewed in Firefox. However,
if the client user agent is IE, then XSS-GUARD protects the browser from any attacks
through XSS vector.

False Negatives. We also found XSS-GUARD to produce false negatives in cases when
attacks utilized non-Firefox quirks that were not identified by the custom content sink.
One typical missed attack instance was based on IE conditional comments. However,
as mentioned before, such attacks can be prevented by appropriately modifying the
content sink.

5 Related Work

Research on cross-site scripting can be broadly classified into approaches that (a) detect
vulnerabilities (b) prevent attacks against applications. Our contribution in this paper
falls into the second category.

5.1 Vulnerability Analysis Based Approaches

There are several approaches that rely on static analysis techniques [19,22,14] to detect
programs vulnerable to XSS injection attacks. As mentioned in the introduction, these
tools are typically intended to be used by a developer during the code development
process. These techniques are limited to identifying sources (points of input) and sinks
(query issuing locations), and checking whether every flow from a source to the sink
is subject to input validation ([19] is flow-insensitive while [22] is flow-sensitive, and
[14] adds more support for aliasing). However, these tools do not themselves check the
correctness of input validation functions.
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Recently, [13] and [11] proposed solutions to the important question of checking
filter functions. In [13] the code of a filter function is abstracted into a context-free
grammar, and the XSS exploits are modeled as a regular expression and detection is
done by checking whether the intersection of these two languages is non-empty. Since
their modeling is based on static string analysis, it does not work for arbitrary custom
filtering code based on dynamic string operations. Balzarotti et al. [11] check sani-
tization code between input locations (sources) and output locations (sinks) through
static analysis, and construct exploits through dynamic analysis. Both these approaches
use some form of “blacklist” for checking whether scripting commands contained in
this blacklist appear in the output of sanitization functions. Based on our discussion in
Section 2, putting together this blacklist will require identifying every possible string
sequence that would result in a scripting command in a browser, while excluding all
valid HTML. This is certainly a challenging task. We avoid the need for a blacklist,
by using a real-world browser and the actual output of an application, thus achieving
precise script detection and XSS prevention.

All the previous static approaches do not track vulnerabilities across web application
modules, and typically lose precision. [10] refers to these vulnerabilities as multi-module
vulnerabilities and develop an approach called MiMosa. It models an application’s ex-
tended state to identify vulnerabilities that traverse modules. Extended state based at-
tacks pose no problem for our approach. Data carried through session variables have
their candidate (shadow) counterparts which denote corresponding benign input, and
can be used to prevent attacks.

5.2 Attack Prevention Approaches

Server side detection approaches [9,16,18,23] track the user specified inputs through
mechanisms like taint tracking. In particular, [16] and [18] briefly suggest in their dis-
cussion that placing syntactical restrictions on tainted data may lead to precise XSS
attack detection. Restricting the tainted data to specific syntactical contexts is a power-
ful idea. Our approach makes use of dynamic candidate evaluation, a real world HTML
parser and a JavaScript engine to obtain the contextual information and place such syn-
tactic restrictions on output of a web application. Thus our approach demonstrates a
realization of this idea in a practical setting for detecting XSS attacks.

Commercial solutions. These are many web applications (KaVaDo InterDo, NetCon-
tinuum NC-1000 Web Security Gateway, Sanctum AppShield, and others that can be
referenced from [3]) that perform filtering at a proxy level to detect injection attacks.
Since these apply a set of (application independent) filters, these are subject to the same
limitations that were discussed in Section 2.

Client side protection. Client side approaches [12,15] try to protect sensitive informa-
tion leakage by preventing attempts to send the sensitive data to third party servers.
These schemes treat symptoms of an XSS attack (such as a cookie stealing script).
Therefore, these schemes do not prevent XSS attacks that violate the same-origin pol-
icy e.g., attacker injected scripts can update user information on the trusted server, or
perform malicious transactions within the same domain. However, such schemes have



42 P. Bisht and V.N. Venkatakrishnan

the advantage of empowering end users by being readily deployable on the clients with-
out relying on the server side to provide the protection.

Browser-Web application collaboration. [17] propose a solution that requires web ap-
plications and browsers to collaborate. Web application provides policies (a while list of
all benign scripts), which when enforced by the browsers (only white-listed scripts ex-
ecute), ensures protection against injection attacks. This is a very sound idea. However
current framework requires web applications and browsers to collaborate - which may
be a big challenge in adoption of such solutions. Further, in [17], white-list construc-
tion is mostly done by hand, and does not automatically include dynamically generated
scripts. Our scheme can be complimentary to the solution provided by [17] to determine
the set of scripts in the whitelist.

6 Conclusion

In this paper, we presented a novel and precise defense against XSS attacks. As a stan-
dalone mechanism or with widely used schemes like filtering, our approach can provide
a robust defense against XSS attacks. We provided extensive experimental results that
corroborate effectiveness, scalability and applicability of our solution to real world ap-
plications and subtle attacks. We also highlighted limitations in our current implemen-
tation (some non-Firefox quirks), and presented our thoughts on developing a technique
for browser independent script identification.

Overall, we believe that the approach presented in this paper has underscored the
promising idea of building solutions based on web application’s output and actual script
identification behaviors of the browsers to counter the serious threats raised by cross-
site scripting attacks.
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Abstract. This paper presents a novel framework to substantiate self-
signed certificates in the absence of a trusted certificate authority. In
particular, we aim to address the problem of web-based SSL man-in-the-
middle attacks. This problem originates from the fact that public keys
are distributed through insecure channels prior to encryption. Therefore,
a man-in-the-middle attacker may substitute an arbitrary public key
during the exchange process and compromise communication between a
client and server. Typically, web clients (browsers) recognize this poten-
tial security breach and display warning prompts, but often to no avail
as users simply accept the certificate since they lack the understanding
of Public Key Infrastructures (PKIs) and the meaning of these warnings.
In order to enhance the security of public key exchanges, we have devised
an automated system to leverage one or more vantage points of a certifi-
cate from hosts that have distinct pathways to a remote server. That is,
we have a set of distributed servers simultaneously retrieve the server’s
public key. By comparing the keys received by peers, we can identify any
deviations and verify that an attacker has not compromised the link be-
tween a client and server. This is attributable to the fact that an attacker
would have to compromise all paths between these vantage points and
the server. Therefore, our technique greatly reduces the likelihood of a
successful attack, and removes the necessity for human interaction.

1 Introduction

As e-commerce and subsequent online transactions emerged on the Internet,
there became a need to protect sensitive communication. This requirement was
partially fulfilled by introducing public key cryptography to secure key ex-
changes. Public key cryptography utilizes certificates to bind an entity to a
specific public key with a digital signature. This digital signature may belong to
a well-known Certificate Authority (CA) or the creator of the certificate. The
former is generally regarded as more secure, but has been exploited previously
due to improper implementations [3]. The latter poses a greater security risk, be-
cause there is no way (other than manually verifying the certificate’s fingerprint)
to confirm the identity of the owner. As a result, a malicious host can exploit this
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uncertainty through the use of a man-in-the-middle attack by intercepting and
altering a certificate to impersonate the same party with another key known to
the attacker. When the public key on the certificate is replaced with the key of
an attacker, the integrity of the encrypted session is compromised if the forged
certificate is accepted.

The most popular public key encryption protocol for the World Wide Web
has been the Secure Sockets Layer (SSL) and its successor, the Transport Layer
Security (TLS) protocol. While these protocols have proven to be relatively ef-
fective, they are also vulnerable to man-in-the-middle attacks in situations where
the user or the client implementation is not able to detect the fraudulent cer-
tificate. These attacks are normally a consequence of other insecure protocols
that allow a malicious host to easily become a man-in-the-middle. Some of these
exploitable protocols include the Address Resolution Protocol (ARP), Domain
Name System (DNS), and Dynamic Host Configuration Protocol (DHCP). Wire-
less networks are also particularly vulnerable since attackers can easily deploy
rogue access points, modify unencrypted link layer frames, and are susceptible
to most switched Local Area Network (LAN) attacks. Only in large networks
with sophisticated Intrusion Detection Systems (IDS) are these attacks routinely
detected and prevented.

In order to prevent SSL man-in-the-middle attacks on the Internet, several
companies operate as certificate authorities to digitally sign X.509 certificates.
Certificates from these CAs are assumed to be secure, since their public keys are
well-known and are included with standard web browser distributions. Therefore,
a web browser only needs to confirm that the digital signature on a certificate
matches one of these trusted CAs. For the majority of cases, the certificates
signed by these CAs function well. However, the service that these CAs provide
comes at a fairly high cost, which deters some web server administrators from
purchasing certificates from them. Current rates for a single domain certificate
cost approximately $100-$200 USD per year, and a wildcard domain certifi-
cate costs about $500-$1,000 USD per year1. To avoid this expensive surcharge,
smaller web sites often create their own self-signed certificates, or purchase a
certificate for only a single domain.

When a certificate is self-signed or if the common name and fully qual-
ified domain name do not correspond, nearly all web browsers will display
a prompt that requests user input on whether to accept the certificate.
These warning dialogs occur even when visiting popular sites like
https://amazon.com and https://bankofamerica.com because the common
name on their certificates are registered only to https://www.amazon.com and
https://www.bankofamerica.com, respectively. The problem derives from the
fact that many web users do not understand the meaning of these “cryptic”
messages, and will accept almost any certificate [21]. Therefore we believe that
it is important to develop a system that does not require user attention for nor-
mal users, while offering supplemental knowledge for expert computer users to

1 http://www.digicert.com/
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determine the legitimacy of a certificate, without having prior knowledge of the
remote web server’s public key.

In this paper, we propose a novel solution to augment the security of SSL
certificate exchanges. The primary objective of our system is to remove certifi-
cate prompts from the web browser, and instead rely on what peers elsewhere
on the Internet observe. We term these outside peers verification servers and
refer to them as such throughout the paper. By combining multiple views from
verification servers, our system greatly reduces the likelihood that an attacker
can intercept and inject their own certificate during the SSL handshake without
being detected. This follows from our method to select verifications servers such
that they have different pathways to a remote web server. As a result, our ap-
proach considerably minimizes the potential man-in-the-middle attack vectors
because an attacker would have to compromise all these paths to launch a suc-
cessful man-in-the-middle attack. To select servers that have different paths, our
system leverages Autonomous System (AS) level topological mappings. Another
benefit our of design is that it is based on existing protocols. Therefore, our sys-
tem can be readily deployed, since it requires no modifications to web servers,
and can be implemented in current web browsers through an extension or plug-
in. In order to evaluate our system’s relative effectiveness and performance, we
deployed our prototype on PlanetLab [15]. Further applications of our design
also extend to other non-web-based public key protocols including Secure Shell
(SSH), Internet Message Access Protocol (IMAPS), and Secure Copy (SCP).

The remainder of this paper is organized as follows. In Section 2, we intro-
duce relevant work that has been previously performed. Section 3 explains how
and why SSL man-in-the-middle attacks work and the potential attack vectors.
Section 4 presents our design considerations, system architecture, and certificate
verification process. We then provide an evaluation of our system and poten-
tial extensions in Section 5. Finally, Section 6 concludes with a summary of our
contributions.

2 Related Work

There are various protocols from the link layer to the application layer that have
been exploited using man-in-the-middle attacks. As a result, there have been nu-
merous studies to detect and prevent the root causes of each vulnerability. One
of the most prominent man-in-the-middle attacks on a LAN is ARP poisoning
[20]. This link layer protocol is insecure since it neither provides any form of mes-
sage authentication nor maintains any state information. In order to mend these
vulnerabilities, several solutions have been proposed that authenticate hosts and
record the bindings of link layer MAC addresses to network layer IP addresses
[2][10][12]. The problem with these solutions is that they are difficult to deploy
due to added infrastructure, operating system modifications for all connected
hosts, and complexities in key distribution for authentication.

Another common local man-in-the-middle attack exploits the DHCP protocol,
which is used to automate network configurations. Since DHCP lacks message
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authentication, an attacker can impersonate and forge DHCP replies to other
hosts, thus manipulating the victim’s IP address, gateway address, and DNS
server information. To mitigate this vulnerability, several authentication and
access control systems have been proposed [1][6][11]. These approaches share
the same limitations as the ARP prevention systems in that all hosts require
operating system modifications to access the network. Moreover, they require
the configuration and setup of authentication servers.

Potentially the most dangerous man-in-the-middle vulnerability stems from
the weaknesses of DNS. Due to the hierarchical structure of DNS, an attacker
may spoof DNS responses that may affect not only a local network, but also
remote networks. To address these shortcomings, the Domain Name System Se-
curity Extensions (DNSSEC) protocol was proposed [8]. DNSSEC is designed
to prevent manipulation of DNS queries and replies via authentication and data
integrity. Current deployment of this protocol has been impeded by a lack of
backward-compatibility with existing DNS servers and hosts. ConfiDNS is an-
other system that monitors DNS replies from multiple vantage points, with
the goal of identifying inconsistencies [16]. However, ConfiDNS is only effec-
tive against attacks on local DNS servers, and has difficulty with discrepancies
produced by DNS load balancing.

An alternative approach to improve current PKIs was introduced by Zhou
et al. through a distributed online certificate authority with a fault-tolerant
algorithm that uses Byzantine quorums, called COCA [22]. While this solution
is elaborate, there are numerous complexities in the distributed infrastructure
that make it impractical to deploy, configure, and maintain.

Unfortunately, all of the preceding solutions require extensive modifications to
hosts, lack support for non-compliant hosts, or both. Instead of developing mul-
tiple protocols to address all possible man-in-the-middle attack vectors, we take
a different approach and provide a method to avert these attacks at the appli-
cation level. This solution permits users of our system to install a web browser
plug-in, which will run silently in the background. This technique makes our
system backward-compatible with all existing protocols. When we combine this
method with lightweight verification servers, we are able to attain a considerably
more deployable solution.

3 SSL Man-in-the-Middle Attack Overview

A man-in-the-middle attack occurs when a malicious host deceives others into
forwarding their traffic to them by impersonating the intended receiver. The po-
tential for these attacks exist in virtually all networks that use unauthenticated
communication (e.g., no encryption and/or message integrity checks). Conse-
quently, these packet manipulations facilitate man-in-the-middle attacks on en-
crypted protocols that exchange public keys through certificates. This weakness
is due to the fact that most implementations of cryptographic algorithms al-
low user interaction to accept self-signed certificates and their associated public
keys. Tools that automate these exploits include webmitm[7] and ettercap[9].
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Fig. 1. Example of an SSL Man-in-the-Middle Attack

An attacker using these tools is able to redirect all of a victim’s traffic to himself
instead of the original destination. Figure 1 demonstrates a classic SSL man-in-
the-middle attack. In this example, Alice and Bob want to communicate with
each other using SSL. The first step in the SSL handshake requires Alice to
contact Bob and request his certificate containing his public key, PB . However,
without Alice’s knowledge, Mallorie, who is on the same physical network as
Alice, has previously poisoned her ARP cache, causing Alice to address all of
her packets to Mallorie. When Mallorie observes Alice’s SSL request, she is able
to intercept her request and make her own SSL connection to Bob. Mallorie then
replies to Alice’s request with her own public key, PM . Alice is prompted by her
web browser that the certificate that she received was valid, but not signed by
a trusted CA. Unfortunately, Alice does not know the meaning of the warning
and accepts the forged certificate. Alice now begins encrypting her traffic to Bob
using the public key of Mallorie, PM . Consequently, Mallorie is able to decrypt,
monitor, and modify all communications before relaying messages between Alice
and Bob.

As illustrated in the preceding example, most current web browsers display
warning prompts when certificates cannot be validated. These dialogs commonly
appear in the following cases:

– A certificate has expired.
– A certificate is signed by a trusted CA and belongs to a domain (without

wildcards), but is not associated with any subdomain
(e.g., https://bankofamerica.com vs. https://www.bankofamerica.com).

– The common name on the certificate does not match the domain name of
the host.

– A certificate is not signed by a trusted certificate authority (e.g., a self-signed
certificate or a certificate signed by a non-trusted CA).

Figure 2 shows an example of a typical certificate mismatch dialog displayed
by web browsers.
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Fig. 2. Mozilla Firefox warning that a certificate is not signed by a trusted CA

4 System Architecture

In this section, we first present the considerations that went into our design, as
well as the assumptions that were made. Next, we introduce our system’s archi-
tecture and explain each component in detail. We then discuss our certificate
verification process. Finally, we describe how clients determine which verification
servers to contact.

4.1 Design Considerations

Before we examine the details of our design, we first present our security threat
model and our assumptions.

The basis for our design is derived from our security threat model shown, in
Figure 3. We believe that because most users of web applications are not experts
in public key cryptography, they are the weakest link in the process when given
the power to make a decision to accept a certificate. In contrast, verification and
web servers are generally deployed by security-conscious network administrators
(i.e., experts), who are knowledgeable about certificates, PKIs, and common
network vulnerabilities. Since attackers are more likely to exploit the easiest
target, which is frequently the user’s inexperience with certificates, it is critical
to assist the client in making the correct decision to reduce this vulnerability.
Therefore, our system focuses particularly on protecting the client from these
man-in-the-middle attacks during public key exchanges.
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In our design, we have made the following assumptions.

1. Web servers and verification servers are on relatively secure networks (i.e.,
networks that perform some form of monitoring) and have not all been com-
promised. Depending on the number of verification servers utilized, our sys-
tem may still function properly if one or more verification servers have been
compromised.

2. The client must be able to authenticate and communicate securely with
the verification servers. This requirement can be put into practice by dis-
tributing the certificates of verification servers to the client as part of a web
browser extension. This serves as a pre-shared key mechanism so that the
client can authenticate the verification server as well as communicate over a
secure, encrypted connection. Alternatively, verification servers may obtain
certificates from well-known CAs and eliminate the need to acquire each
verification server’s public key from the browser plug-in.

3. There exists at least one non-compromised pathway to a web server. Our sys-
tem depends on this notion to identify inconsistencies reported by different
verification servers. Therefore, if a man-in-the-middle is located on or near
the web server’s network, or if only one pathway to the web server exists, our
system would not be able to detect an attack. We are confident, however,
that in most cases this assumption holds because an attacker will normally
exploit vulnerable client networks (e.g., an insecure wireless hotspot). We
discuss the impacts of this assumption later in Section 5.4.

4.2 Certificate Verification Components

In this section, we present the components that make our system effective in sub-
verting man-in-the-middle attacks based on the preceding set of assumptions. As
previously mentioned, the general idea of our system is to add an extra layer of
security to public key exchanges by coalescing diverse views from trusted peers,
and verifying that they are the same. We achieve this verification with an auto-
mated process, which is critical in removing user interaction that may otherwise
compromise security. The fundamental principles that we incorporated in our
design are based on the inherent lack of user understanding about the operation
of public key cryptography. Therefore, the client-side of the verification system
must be extremely easy to use. On the server-side, simplicity and compatibility
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with existing web servers is essential. Hence, a web server should be able to
interface with our system with no modifications. For certificate validation, we
have developed a lightweight verification server that provides the client with its
own perception of a remote certificate.

As shown in Figure 4, there are three main components of our system that
implement our objectives: the client, verification servers, and web server. The
client that we refer to includes standard web browsers with extension support
(e.g., a Mozilla Firefox/Opera plug-in or Internet Explorer add-on). The second
component can be almost any existing web server with SSL support such as
Apache, IIS, or Tomcat. These web servers will function with our system with
no alterations or additional modules. The verification servers operate as the
intermediary between the client and web server and handle certificate exchanges,
caching, and verification.

4.3 System Deployment

Deploying our system is straightforward. The only requirement for a client is to
install a web browser plug-in. We also provide the option for advanced users to
deploy their own verification servers (although not necessary). The deployment
process to interface with VeriKey is described below.

Client. The client must perform a one-time installation of our web browser
extension. This extension contains a pairwise set of IP addresses and certificates
containing the public keys for the default verification servers {{IP1, PV1}, {IP2,
PV2}, {IPn, PVn}}. As mentioned previously, verification servers may also at-
tain a digitally signed certificate from a well-known CA such as VeriSign. In
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that case, only the distribution of their IP addresses is necessary. In addition,
pre-computed AS topology maps are bundled that assist in verification server
selection (discussed later in Section 4.5). The extension also has the ability to
automatically update, revoke, and add new verification servers. Expert users
may configure extra security requirements and have the option to integrate the
information obtained during the verification process into the default security
warning rather than allowing an automatic decision to be made on their behalf.

Verification Server. As previously discussed, more advanced users have the
ability to deploy and configure their own verification servers. The web browser
extension can then be configured to update its verification server set to point to
these new custom servers. These verification servers may be deployed at research
institutions, corporations, and other large organizations.

4.4 Certificate Integrity and Verification

In order to efficiently validate certificates, we have devised the following method-
ology as demonstrated in Figure 5.

Case 0: The initial step involves retrieving the web server’s certificate. This
exchange ensues during the SSL handshake, and the client must then confirm
whether a trusted CA has signed the certificate.

Case 1: If the certificate has been signed by a trusted CA, the common name
on the certificate is compared with the domain name of the web server.

– If the common name matches the domain name of the web server, the cer-
tificate should be trusted and the SSL connection can proceed normally. We
ignore any mismatch between a domain and its possible subdomains, which
commonly occurs when web sites do not purchase wildcard certificates and
thus trigger warning messages. We justify this rationale based on the fact
that it would be extremely difficult for an attacker to acquire a legitimate
certificate for a subdomain that belonged to another entity.

– If the common name does not match the domain of the web server, the certifi-
cate (although valid), should not be trusted and the SSL connection between
the client and web server should be blocked. This would occur when a man-
in-the-middle has obtained a legitimate signed certificate from a trusted CA
but for a different domain. Thus the man-in-the-middle could inject his own
certificate (e.g., www.hacker.com) during communications with another web
server (e.g., www.bank.com).

Case 2: If the certificate has not been signed by a trusted CA (e.g., is self-
signed), then the VeriKey certificate verification process will commence accord-
ingly. Each of the following steps are illustrated in Figure 6.

1. Client communication with verification servers. The client connects
to a number of verification servers. How these servers are selected will be
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discussed in the following section. After completing the handshake, the client
verifies that the SSL handshake results in the reception of the correct public
key of the verification server, Pv. If the certificate does not match, there is
a man-in-the-middle between the client and verification server. Otherwise,
the client sends the full domain name and IP address of the web server to
the verification server. The purpose of sending the pair (domain, IP) is to
enable the verification server to determine if its own DNS resolution matches
that of the client. In addition, these pairs are required when a single domain
name may resolve to multiple IP addresses.

2. Certificate Request. The verification server checks its internal cache to
see if it has previously retrieved the certificate. If the public key is not found
in the cache, it connects to the web server to retrieve the server’s certificate.
Otherwise, the verification server forwards the cached public key of the web
server to the client and Step 3 is omitted.

3. Certificate Exchange. The verification server (a) connects to the web
server to retrieve its public key and (b) forwards it to the client.

4. Public Key Verification. At this stage, the client can now compare the
certificate and public key of the server. If the public keys match, the client
can communicate with the web server. Otherwise, there is a problem with the
connection (e.g., a man-in-the-middle) and the client will be notified that a
potential security risk has been identified and the web server connection will
be terminated. If the client’s browser plug-in has been configured with higher
security requirements, multiple verification servers will be utilized to verify
the public key of the web server. When this option is chosen, a variable-based
threshold τ is used in determining the number of public key matches μ that
are required from the verification servers such that μ > τ . When the plug-in
is configured in expert mode, the observed results are presented to the user,
enabling them to make a manual decision instead of aborting the connection.
In Section 5.5, we propose a mechanism to use the verification server as an
SSL proxy, which may offer an alternative secure communication channel to
the web server when a man-in-the-middle has been detected.

5. (Optional) Verification Status Report. This last step is optional, but
allows a client to provide feedback to verification servers on the results of the
certificate verification. This step enables the verification servers to determine
if a certificate on the remote web server has changed and needs to be updated
as well as to construct records of man-in-the-middle attacks.

4.5 Verification Server Selection

The architecture of our system provides support for utilizing multiple verifica-
tion servers. A client may elect to query several verification servers for their view
of a particular web server’s certificate, which in the general case, will enhance a
client’s perspective. However, this technique may neither be the most effective
nor efficient method to validate certificates. There is the possibility that one or
more verification servers will share the same pathway to the web server. This sce-
nario would occur if an attacker was positioned on one of these shared pathways
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Fig. 5. Flow diagram depicting the certificate integrity process

between the client and server. Thus, the security of the verification process does
not always increase with the number of responses from additional verification
servers. In order to determine the number and locations of verification servers
to query, we have developed our own selection algorithm.

Before presenting our verification server selection technique, we first intro-
duce other potential selection options and the relevant effects. In order to assist
our analysis, we define the distance between two hosts as the number of Au-
tonomous System (AS) links on the shortest path between them and denote
this as d(source, destination). The selection procedure may optimize for latency,
limited resources, and/or security. The easiest way to reduce the latency of the
verification process is to minimize the sum of the distances between client, ver-
ification server, and web server (i.e., min {d(C, VSi) + d(VSi, WS)}, ∀ : VSi).
However, this method is näıve, because when the combined distance is minimal
there is a higher probability that more than one of these hosts have paths that
overlap.

If limiting the amount of resources (e.g., CPU time and bandwidth) is an im-
portant consideration, a client can randomly select a single verification server.
This approach has several limitations including an increased response time, par-
ticularly if the verification server is located far from the client and web server.
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Our approach, however, enhances security while reducing latency and resources
when selecting a verification server. We achieve this functionality by computing
the shortest AS pathways in advance and then utilize the information to compare
the overlap among a set of verification servers. This data can be collected from
publicly available Internet topology maps that analyze BGP routing dynamics to
discover AS adjacencies. The data sources and the details of our implementation
are discussed later in this section.

We denote the path between client and web server as C ⇒ WS and the path
between verification server and web server as VS ⇒ WS , where C, VS , and
WS represent the client, verification server(s), and web server respectively. We
first calculate the shortest path between the AS of the source and the AS of
the destination (given our topology information). After this computation, we
select the verification server that has the least amount of link overlap between
the two paths (i.e., min{C ⇒ WS ∩ VSi ⇒ WS}, ∀ : VSi). If more than one
shortest pathway exists between hosts, we calculate the average overlap between

paths according to the equation 1
n

n∑
i=1

λi where λ is the number of links that

overlap. This rationale follows from the fact that an attacker cannot influence
or predict the exact path between any two hosts, and packets are more probable
to follow shorter pathways. If there are multiple paths that have equivalent
overlap, one path will be selected randomly from the potential paths with a
uniform probability.

An example of our verification selection algorithm is shown in Figure 7. In
this instance, the client is located within the UCSB AS, and is connecting to a
Bank of America web server. The client has three verification server options to
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choose from that include UC Berkeley, Stanford University, and the University
of Washington. Using the pre-computed routes between each verification server
and Bank of America, the client selects the verification server with the least
number of shared AS links. In this case, the optimal verification server is at
Stanford University since it shares no path overlap with the connection between
the UCSB client and Bank of America. Conversely, the verification server at
Berkeley would be considered the least suitable of the three, since its path to
Bank of America shares two AS links (CENIC and Level 3 Communications)
with the path from the client to the bank.
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S3

S2
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Fig. 7. Verification server selection example for a client at UCSB to the web server at
Bank of America. Path overlaps are highlighted in bold.

Our path selection algorithm provides an important advantage, since the IP
to AS mappings enable us to determine a priori the relative security of the
verification process. Thus, we can ensure that the client, verification server, and
web server are not on the same networks by analyzing each host’s AS number
(AS{C}, AS{VS}, AS{WS}). If any two have the same AS number, there is
a higher risk of a man-in-the-middle since one or more links will likely be in
common. In addition, the path selection algorithm that we utilize also enables us
to determine the relative effectiveness of a chosen verification server. In the worst
case, (C ⇒ WS ⊆ VS ⇒ WS), which signifies that the client and verification
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server share the same path to the web server and the verification process will
not be effective. Furthermore, our topological maps allow us to select verification
servers efficiently even when a client machine is physically relocated (e.g., a
laptop that may frequently change locations).

We implemented our selection process by computing the shortest paths and
locations of verification servers in relation to various netblocks using AS topo-
logical mapping engines such as CAIDA’s skitter2, Route Views [13], and the
Routing Information Service (RIS) [18]. We then correlated these maps with
publicly available AS to IP address netblock mappings [14], and from the Rout-
ing Assets Database (RADb) [17]. After obtaining this data, we corroborated
these paths using multiple trace routes on PlanetLab using Scriptroute [19].
These measurements confirmed that these paths were approximately 80% accu-
rate with errors occurring in resolving IP addresses to AS numbers, and due to
alternative AS paths. When the IP address of a host could not be resolved to an
AS, we chose verification servers at random.

5 Evaluation

In this section, we analyze the performance impact of VeriKey and discuss the
security of the system against man-in-the-middle attacks. We then follow with
a discussion about our system’s limitations and how it can be extended for
enhanced performance and added security.

5.1 Experimental Setup

After implementing our system, we deployed 47 verification servers across five
continents using PlanetLab. We then recorded measurements of the certificate
verification process from a range of locations for the client, verification servers,
and web server. The purpose of our experiments was to determine approximate
bounds on the time necessary for the certificate verification process to complete.
We estimated these bounds by taking geographically diverse measurements from
regional, national, and multi-national locations. More specifically, the regional
test involved machines across California, the national test involved machines
traversing the entire United States, and the multi-national experiments entailed
global pathways. Each experiment consisted of a single client, verification server,
and web server.

5.2 Verification Process Overhead

Before we examine the experimental measurements, we first present the over-
head for a single session. Table 1 demonstrates the bandwidth overhead involved
for the certificate verification process from a single verification server, which is
independent of the location of the verification server. Assuming symmetric con-
nectivity between the client, web, and verification servers (i.e., the verification
2 http://www.caida.org/tools/measurement/skitter/
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Table 1. Approximate VeriKey overhead for non-cached certificates

Standard SSL Handshake Certification Verification
Bytes RTTs Bytes RTTs

Transferred Transferred

C ↔ S 2,411 5x 2,411 5x
C ↔ V - - 2,857 7x
V ↔ S - - 2,411 5x

Total 2,411 5x 7,679 17x

server is roughly half the distance between the client and web server), the round-
trip-time is approximately 3.5 times a standard SSL handshake without caching.
The overhead in bytes is slightly over three times the standard SSL handshake.
The absolute amount of time and overhead, however, are relatively small as only
about five extra kilobytes are required, and the latency for certificate verification
is typically on the order of one second (more precise numbers based on the lo-
cations of the verification servers are shown in Table 2). More importantly, this
process is only a one-time cost, and after the initial verification process, the SSL
session resumes with no additional overhead. The round-trip-time can be further
reduced by more than 50% when temporary certificate caching is enabled on the
verification servers. This diminishes the need for the SSL handshake between the
verification server and web server, reducing the overhead to only double that of
a standard SSL handshake.

Table 2 displays the results of the verification delay for servers from various
geographical locations averaged over ten consecutive trial runs. We executed two
types of verification tests for each web server. In the initial test, the verification
server had not previously cached the certificate of the web server. In the following
test, the verification server had already cached the web server’s certificate and
directly returned it to the client, thereby reducing response time and subsequent
connections to the web server. Each set of tests was performed ten times and
the measurements were recorded. When the client, verification server, and web
server were physically closer, the overall performance gain of caching (measured
in latency) decreased by about 16%. This reduction in performance was due to
the limit on the latency between the client and verification server.

In the approximate worst case, the verification process could take almost
three seconds. While this delay would be evident to a user, we could potentially
leverage this delay to query closer verification servers. Depending on the number
and density of the deployed verification servers, the average case would most
likely appear similar to the regional and national examples with verification
times of less than one second.

5.3 Man-in-the-Middle Attack Prevention

In this section, we examine the protective measures of VeriKey against man-
in-the-middle attacks. The potential for a man-in-the-middle attack can exist
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Table 2. Verification process delay perceived by clients

Verification Time
Test Client VS WS Non-cached Cached

Multi- ucsb.edu uestc1.edu.cn univie.ac.at 2.876s 1.830s
National 1 (USA) (China) (Austria)

Multi- canterbury.ac.nz u-tokyo.ac.jp berkeley.edu 2.303s 1.891s
National 2 (New Zealand) (Japan) (USA)

Multi- mit.edu utoronto.ca zib.de 1.040s 0.691s
National 3 (USA) (Canada) (Germany)

National harvard.edu colorado.edu uci.edu 0.885s 0.674s
(USA) (USA) (USA)

Regional uci.edu berkeley.edu ucsb.edu 0.236s 0.204s
(USA) (USA) (USA)

on the same network as the client establishing the egress SSL connection, the
ingress web server’s network, or anywhere in between. Our system successfully
prevents most of the possible attack vectors, and prevents all attacks that we
consider likely under our set of assumptions.

The most likely location for man-in-the-middle attacks are on client networks
since they are not routinely monitored and most operating systems do not im-
plement proper safeguards. However, we can establish secure communication
between the client and verification server. As previously discussed, this is a
result of requiring clients to install a web browser plug-in that stores the IP
addresses and public keys of the verification servers. This prevents the primary
classes of attacks including a rogue DHCP server, an attacker who has poisoned
the ARP caches of nearby hosts, and DNS spoofing that would redirect users
to a malicious server. Because all messages are encrypted with the verification
servers’ public keys, only the trusted verification servers are able to decrypt the
packets. If a client receives any certificate other than that of the verification
server, it becomes trivial to detect malicious behavior, and block further SSL
communications.

The verification servers’ networks could contain a man-in-the-middle attacker.
However, on the client-side, the attacker would be trivial to detect during the
SSL handshake since the certificate would not match that in the client’s trusted
CA root. In addition, our verification server path selection algorithm will choose
a verification server with the least amount of overlap between the path from the
web server to the client, and the path from the web server to the verification
server. Hence, a successful attack would essentially require a coordinated attack
on multiple autonomous systems. A VeriKey client can also detect a compro-
mised verification server by maintaining a history, and comparing the results
from other verification servers. If a particular verification server consistently re-
sponds with invalid keys over a prolonged period of time, the client may remove
the verification server from its trusted list.

In our system, we eliminate user dialog messages for the average user because
we believe the messages do more harm than good. Hence, we systematically
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verify or reject the certificate without the need for human interaction. For ad-
vanced users, VeriKey offers additional information about the potential threat
and the number of inconsistencies among the verification servers. Thus, our sys-
tem provides versatility and security for both average and expert users.

5.4 System Limitations

In this section, we address the limitations of our system, which include man-in-
the-middle attacks that occur on the web server’s network, and the potential for
a denial of service.

A man-in-the-middle can exist on the web server’s network, which is the hard-
est attack to detect from the viewpoint of the client and verification server. How-
ever, we believe that it is also the least likely place for an attack to occur since
most web servers are on networks that employ firewalls, actively monitor for
malicious behavior, and employ IDS systems. The only possible way to detect
an attack near the web server is to require prior registration (e.g., obtaining a
signed certificate from a CA).

Another potential weakness of the system is that a man-in-the-middle could
potentially detect and block all traffic to or from verification servers. By cre-
ating a denial of service (DoS) attack against verification servers, the attacker
would prevent a client from being able to verify any certificates. However, since
it would be rather trivial to detect this type of abuse, the system would still
be constructive in preventing SSL man-in-the-middle attacks (even though the
client would no longer be able to communicate with the server).

VeriKey’s distributed architecture also protects against DoS attacks against
individual verification servers by removing any single point of failure. Therefore
we maintain constant availability with a large distributed set of servers, and in
the event that a verification server is attacked, it will not affect the entire system.

5.5 Security and Performance Optimizations

In this section, we analyze possible extensions to our system to provide better
security and performance. As mentioned previously, a man-in-the-middle attack
detected by our system may cause a denial of service for the client because the
client’s connection to the web server would be blocked for the duration of the at-
tack. On the other hand, if a man-in-the-middle has not compromised the connec-
tion between the client and verification server, we may be able to use the proxy
connection to the web server. Thus, the verification server could operate as an
SSL proxy server, allowing the client to securely browse the remote web server
as shown in Figure 8. In order to prevent a man-in-the-middle between the ver-
ification server and web server, the verification proxy server would function as a
client web browser. That is, the verification server would follow the same process
described in Section 4.4 and connect to other verification servers to ensure that it
has not become compromised by a man-in-the-middle attack itself.

The major downside of this design is that it puts substantial trust into the
verification proxy server and assumes that the verification server itself has not
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Fig. 8. Verification servers operating as SSL proxies

been compromised. In terms of overhead, this approach would also place a larger
resource burden particularly on verification proxy servers. The client would also
notice an increase in latency for the entire duration of the session rather than
just the initial connection setup.

Another optimization to improve our framework’s response time is to cache
public keys from previous verification requests. This optimization works well,
provided that the remote certificate has not recently changed. In order to de-
termine when the verification server needs to update a certificate, we propose a
method to maintain a history of client feedback during prior verification sessions.
That is, when clients report a certificate mismatch, the verification servers will
contact the web server to update the certificate. This would employ the knowl-
edge gained from the optional confirmation status at the end of the VeriKey
process as described earlier in Section 4.4. We introduce the concept of a rep-
utation [4] to prevent a malicious host from deceiving verification servers into
launching denial of service attacks by directing them to persistently contact a
web server. This procedure would provide the ability for verification servers to
identify compromised networks and construct a reputation-based scheme per IP
Class C netblock, in addition to determining whether any of its own cached pub-
lic keys may be outdated. Verification servers would refresh public keys from a
web server only when a client with a positive reputation reported a key that did
not correspond to the one stored in its own internal cache. This method serves
two primary purposes: to establish that there is no man-in-the-middle between
verification server and web server, and to update the verification server’s public
key cache when a web server’s certificate changes. The downside of utilizing the
reputation scheme is that it may not always be trustworthy and would require
additional storage resources on the verification servers.
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6 Conclusion

In this paper, we presented the design, implementation, and evaluation of an ar-
chitecture to augment the security of SSL public key exchanges. In particular, we
have introduced a means to verify the integrity of self-signed certificates. For av-
erage clients, we have substituted user interaction with an automated technique
to utilize the views of remote peers, while empowering expert users with sup-
plemental information about public key exchanges to make better assessments
when accepting certificates.

We have shown the benefits, performance impacts, and the limitations of our
system. Although our system is not free of weaknesses, we believe that the ad-
vantages that it provides far outweigh the potential drawbacks. Through our
analysis, we are confident that our approach significantly increases the level of
difficulty for a miscreant to launch a successful attack. As more insecure wireless
networks are deployed, the number of attacks will likely increase because these
networks provide a more susceptible environment in comparison to traditional
wired LANs. Therefore, we see the need for a cost-effective and lightweight solu-
tion, such as the one that we have proposed, to protect and prevent users from
becoming victims of these attacks.
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Abstract. Malware is at the root of a large number of information secu-
rity breaches. Despite widespread effort devoted to combating malware,
current techniques have proven to be insufficient in stemming the inces-
sant growth in malware attacks. In this paper, we describe a tool that ex-
ploits a combination of virtualized (isolated) execution environments and
dynamic binary instrumentation (DBI) to detect malicious software and
prevent its execution. We define two isolated environments: (i) a Testing
environment, wherein an untrusted program is traced during execution us-
ing DBI and subjected to rigorous checks against extensive security poli-
cies that express behavioral patterns of malicious software, and (ii) a Real
environment,wherein a program is subjected to run-time monitoring using
a behavioral model (in place of the security policies), along with a contin-
uous learning process, in order to prevent non-permissible behavior.

We have evaluated the proposed methodology on both Linux and Win-
dows XP operating systems, using several virus benchmarks as well as
obfuscated versions thereof. Experiments demonstrate that our approach
achieves almost complete coverage for original and obfuscated viruses.
Average execution times go up to 28.57X and 1.23X in the Testing and
Real environments, respectively. The high overhead imposed in the Test-
ing environment does not create a severe impediment since it occurs only
once and is transparent to the user. Users are only affected by the over-
head imposed in the Real environment. We believe that our approach
has the potential to improve on the state-of-the-art in malware detec-
tion, offering improved accuracy with low performance penalty.

Keywords: Malware, control-data flow, execution context, dynamic bi-
nary instrumentation, virtualization.

1 Introduction

Defending computer systems against malicious software is one of the primary
concerns in information security. Recent years have witnessed a steady increase
in the prevalence and diversity of malware, resulting in escalating financial, time,
and productivity losses, as testified to by disclosures from various organizations
(e.g., Computer Security Institute (CSI) [1], Virus Bulletin [2], Symantec [3],
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etc.). This trend has occured in spite of widespread awareness and increasing
efforts towards the deployment of anti-malware tools. Therefore, the development
of new approaches to address malicious software is an important research front
in information security.

Malware takes myriad shapes and forms, including viruses, worms, Trojan
horses [4], etc., and varies in severity, propagation media, and frequency of oc-
currence. In this work, we propose a new approach to malware detection and
explore it in the context of viruses. However, our work can be adapted to defend
against other forms of malware.

Computer virus research is described in [5] as a “rich, complex, and multi-
faceted subject. It is about reverse engineering, developing detection, disinfec-
tion, and defense systems with optimized algorithms”. The constant rise in the
sophistication of viruses has been continuously scrutinized by malicious code ex-
perts in order to deploy efficient and well-tuned anti-virus techniques. Signature-
based techniques have been the mainstay of virus detection, and form the basis
for most current commercial products. More advanced products rely on heuristic
analysis and sandboxing techniques [3,6]. Testing and evaluation procedures for
anti-virus tools have been developed by various academic and commercial enti-
ties [7,8]. A fundamental limitation of signature-based techniques is the need to
keep the signature database up-to-date in order to provide protection against the
latest threats. While significant progress has been made in this regard through
automatic update tools, the emergence of zero-day and even zero-hour attacks
has clearly stretched the capabilities of current approaches to virus defense.

From a research point of view, various techniques have been proposed that
extend or build upon the capabilities of signature-based techniques. The work
by Zhou [9] builds a flexible virus detection and vulnerability remediation sys-
tem using distributed network devices and network traffic analyzers. Centralized
and distributed virus detection schemes based on automatic program signature
generation are presented by Shin-Jia et al. [10]. Detection based on established
heuristics, pattern recognition and machine learning techniques, such as data
mining, Bayesian networks, etc., have also been proposed [11,12]. Panorama, by
Yin el al. [13], uses taint propagation information at the hardware and oper-
ating system (OS) levels in order to detect privacy-threatening malware. Other
techniques use reverse engineering [14] in order to analyze viruses. Semantics-
aware techniques for discovering obfuscations of viruses or worms are presented
by Christodorescu et al. [15,16]. A known program code with malicious intent is
formalized using a template, embedding within its blocks instruction variables
and constants. A template-based matching is then proposed to detect obfusca-
tions of the code in question. Moser et al. [17] propose a solution to improve
test coverage in malware analysis systems. The solution relies on tracking the
input dependency of the program control flow, generating input values to force
execution along a specific path, and then exploring the actions that the pro-
gram performs under those input values. A widely used preventive technique for
addressing viral and non-viral malware proliferation on computer systems con-
sists of executing untrusted code in containment or protection domains, wherein
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specific access privileges are assigned to each domain. For example, the security
risks of helper applications are alleviated by restricting their access to the un-
derlying OS by defining several dispatch tables [18]. Similar other approaches
have also been presented [19,20]. Since the web browser is a common source of
malware attacks, tools such as VMWare’s secure browser appliance [21] run the
browser in a separate virtual machine to confine the negative impact of browser
exploits on the system.

We conjecture that minor enhancements to current structural approaches to
virus detection are unlikely to succeed in the face of ever-increasing sophistication
in the techniques (such as obfuscation, payload encryption, etc.) used by virus
writers. In the extreme case, the only way to detect a virus may be to realize,
after it has executed, that it has had malicious effects. Fortunately, a solution
to this conundrum is made possible by the emergence of technologies such as
virtualization and dynamic binary instrumentation (DBI), which allow us the
luxury of executing untrusted code without compromising the system.

In this paper, we propose a novel approach for the detection and prevention
of computer malware, in particular, computer viruses. We have designed and
implemented a tool to automatically analyze and identify malicious software
based on a compiled list of fundamental and evolving malicious behavioral traits.
We exploit isolated software execution capabilities provided by virtualization
and DBI. Virtualization is a useful technology for addressing security concerns
and has several applications to information security. It allows for the creation
of isolated execution environments, e.g., for implementation of honeypots [22]
and execution of security-critical functions such as anti-virus tools, etc. [23].
We especially exploit this provided isolation, which enables us to safely test
untrusted code without the danger of corrupting a “live” execution environment.
In order to preserve a system’s integrity, an isolated compartment, duplicating
a system’s configuration and state, can be built and used for defending against
malicious software.

Our specific approach to virus detection is based on observing the execution
of unknown programs (whose source code is not available), modeling safe/unsafe
behavior with respect to specified security policies, and ensuring that the pro-
gram does not deviate from safe behavior. We utilize the concept of isolated
execution by defining two virtual execution environments, namely a Testing en-
vironment and a Real environment. Our tool performs the following steps:

1. While executing an untrusted program in the Testing environment, we use
DBI to collect specific information in the form of execution traces.

2. We analyze the execution traces to construct a hybrid model that represents
the program’s dynamic control and data flow in terms of regular expressions
and data invariants. The regular expression RU has an input alphabet Σ
= {BB1, ..., BBn}, where BBi is a basic block of the execution trace. For
each basic block, several data properties are captured that are relevant to
detecting malicious software execution.
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3. We design security policies that represent fundamental traits of a malicious
program behavior. We express the policies using the same hybrid model as
the program execution traces (we use RP to denote this model).

4. Through an enhanced regular expression intersection of hybrid models RU

and RP , we detect malicious behaviors in the unknown program.
5. By combining the previous intersection result, program properties, and data

invariants, we extract appropriate checkpoints and derive a behavioral model
M , which can be used as an efficient proxy for the security policies.

6. After extensive testing of the unknown program, it is moved into the Real
environment, where we monitor its execution and ensure that it conforms
with model M . Checks are performed at the granularity of extracted check-
points. If a new execution path is encountered, restrictive security policies
are enforced at run-time, thus, preventing any malicious execution, and M
is updated with information regarding the newly executed path.

We implemented the proposed framework using the Pin DBI tool from Intel,
and evaluated its utility and performance using multiple in-the-wild viruses, i.e.,
those that are currently infecting computer systems, and in-the-zoo viruses, i.e.,
those that are not being currently spread or are only available online. We applied
our tool to both Linux and Windows OSs. The tested viruses cover a wide range
of malicious traits and behaviors. Results show that our tool enables an almost
complete detection and prevention of all the considered attacks.

Our work is differentiated from previous work in that it bases its detection on
the fundamental traits of malware behavior, enabling it to achieve high coverage
of both new malware and new variants or obfuscations of known malware. Most
previous approaches, including heuristic- and behavior-based approaches, can-
not discern subtle differences between benign and malicious execution, and are
thus forced to incur high false alarm rates. The proposed framework can allow
a program to execute past the point where a malicious behavior is triggered,
due to the “safety net” provided by virtualization, and execution trace analysis
occurs after a program has finished or aborted execution. This is very attrac-
tive when the execution of malware closely resembles that of a benign program.
Moreover, we believe that our hybrid model, based on regular expressions and
data invariants, offers a general framework to combine control- and data-based
analysis. Together, these factors lead to an improvement in detection accuracy,
as underscored by our experimental results. We note that our approach is not
limited to defending against the aforementioned malicious software; it promises
coverage of a wider range of software vulnerabilities and malicious software be-
havior, provided that appropriate security policies are designed. Our work in [24]
applies this approach to various software vulnerabilities with promising results.

The rest of the paper is organized as follows. The next section provides a
high-level overview of our approach. Section 3 discusses the details of the pro-
posed framework in the Testing and Real environments. Section 4 presents the
experimental methodology and results, and Section 5 concludes the paper.



68 N. Aaraj, A. Raghunathan, and N.K. Jha

2 Overview

Figures 1(a) and (b) present the architecture of the proposed tool in both execu-
tion environments. Figure 1(a) depicts the different components in the Testing
environment (Section 3.1): (1) the execution trace generator, (2) the regular ex-
pression generator, (3) the security policy generator, (4) the detection module,
and (5) the behavioral model generator. The execution trace generator executes
the untrusted program under a series of automatically-generated input sequences
(in addition to any user-provided inputs). While building the program execution
traces, DBI, based on the Pin [25] framework, is used to intercept execution and
generate information that is necessary for analyzing the execution of malicious
behavior. The regular expression generator combines each sequence of instruc-
tions that terminates in a control flow transfer instruction into a basic block
(BB). Consequently, the execution trace is expressed as a regular expression R
defined over alphabet Σ = {BB1, ..., BBn}, which represents the set of all basic
blocks in the program. The union of all generated regular expressions (each rep-
resenting a separate program execution) is performed to combine the program
execution paths into a single regular expression RU . Meanwhile, regular expres-
sions are passed through a data invariance detector, which formulates invariants
obeyed by the data associated with each basic block. When no new input se-
quence is able to activate new execution paths, RU is analyzed to determine
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Fig. 1. Framework overview for the: (a) Testing and (b) Real environments
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whether the corresponding program has manifested any malicious behavior. To
this end, RU is subjected (through a regular expression intersection operation)
to rigorous security policy checks. Security policies are expressed using the same
hybrid model along which RU is designed and they encapsulate within their
model fundamental malicious behaviors. The intersection procedure also allows
identification of “checkpoints” – trace segments whose monitoring is critical for
preventing any security exploits. Checkpoints and invariants are consequently
used by a behavioral model generator, which filters out basic blocks that are
significant for the tool’s purposes and defines a fixed set of blocks, which cap-
ture properties indicative of permissible or non-permissible program behavior.
The behavioral model, M , also maintains a record of the application’s control
transfer points in order to keep track of the executed paths. M is then migrated
to the Real environment.

Figure 1(b) depicts the Real environment. After an application is moved to
the Real environment, it is subjected to instrumentation at the basic block gran-
ularity and to run-time monitoring, wherein only checkpointed basic blocks are
monitored [part 1 in Figure 1(b)]. Run-time monitoring also involves the appli-
cation of restrictive security policies in the case where new execution paths are
encountered [part 2 in Figure 1(b)], as described in Section 3.2.

3 Details of the Proposed Approach

This section describes the operation of our system in the Testing and Real envi-
ronments in Sections 3.1 and 3.2, respectively.

3.1 Design and Implementation of the Testing Environment

This section describes the implementation of the Testing environment and its
various components.

Execution Trace Generator. Our tool is built on top of Pin [25], which trans-
parently performs DBI at run-time, by inserting extra code into an application
for behavioral observation and information (data and control) logging. Using the
Pin API, we developed our tool to execute each instruction intercepted by Pin
and generate data and control information, which reflects actions of the code
under test that need to be checked against the security policies. The program
state information that is observed for the malware instances tackled in this work
(i.e., viruses) is the following:

1. Calls to and arguments of “exec” function and its variants.
2. System or library calls involving modifications of any file or directory.
3. Calls to functions that create symbolic and hard links.
4. Instructions performing memory reads and writes.

When an unknown application is executed, DBI monitors its control flow and
that of dynamically-linked libraries (e.g., the GNU C library) mapped into its
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Rk

uint64 execution_id: b63...b1b0, where each bi is set in case BBk is executed in the ith execution
of the program
SYS_CALL syst_call: BBk contains a file modification system call . Contains: name and arguments
of system call

BOOL condition: TRUE if BBk contains a conditional call transfer

BOOL join_point: TRUE if BBk contains a condition 's exit point

INV* inv: invariants of any form derived over BBk components

(a) (b)

BB2

BBk

int num_successor: number of basic block successors

int unique_block_address: address of basic block

int* successor: index array of basic block successors

BB1

LINK link: BBk contains a symbolic or hard link. Contains: name, user group, and access
privileges of the linked-to file
Mem_R mem_read: BBk contains a memory read operation. Contains: size and range of read memory

Mem_W mem_write: BBk contains a memory write operation. Contains: size and range of written memory

Execute exec_ed: BBk contains an ``exec'' function variant. Contains: path of executed argument

RTN Routine: BBk contains routine or function call. Contains: name and address of invoked function

BOOL stamp: BBk contains a conditional transfer instruction and has multiple successors

int block_number: index number of basic block

Fig. 2. Overview of (a) regular expression Rk, and (b) basic block BBi structure

address space. Dynamically-linked libraries are considered potentially unsafe and
subjected to the same analysis as the application.

While most computer viruses operate independently of user inputs, those in
infected files may only be triggered when a particular path, which may be input-
dependent, is executed. Therefore, we design an automatic input generation
technique, described later, in order to exercise as many paths as possible, thus,
triggering a virus along an input-dependent path execution.

Regular Expression Generator. We describe below the key steps performed
by the regular expression generator, namely regular expression extraction, reg-
ular expression union, and data invariant generation.

Regular Expression Extraction
In addition to generating an execution trace corresponding to each run of the
untrusted binary, we transform each execution trace into a regular expression.
Each constructed regular expression presents a codified method that allows pars-
ing and isolation of specific properties within the body of the execution trace.
It is defined over alphabet Σ = {BB1, ..., BBn}. At the highest level of gran-
ularity, each literal, BB, is a basic block derived as a sequence of instructions
terminating at a control flow transfer instruction. Upon building a basic block,
we map the information observed within its scope to various properties, which
can indicate malicious effects when they assume specific values or when they
occur in a specific sequence. Each property captured in a basic block is coded
into a concise representation. Figures 2(a) and (b) present, respectively, a reg-
ular expression example and the various properties that are encoded within a
basic block. Note that each BB is uniquely identified by its standardized address
unique block address and its block number. If BB’s entry point corresponds to a
static executable address A, then unique block address = A. On the other hand,
if this entry point corresponds to a dynamically-linked entry, we calculate ad-
dress offset O in an execution trace with respect to a pre-defined value A′ that
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we specify. Given that the value of the first dynamically-linked address that fol-
lows an application’s entry point virtual address is equal to DA, O = DA − A′.
Thereafter, the address of each such BB is adjusted by this offset in order to
allow for efficient and correct comparison by the regular expression union mod-
ule, thus yielding the value of unique block address. Constituents of each BBi

in regular expression Rk are extracted from the kth execution trace and Rk is
generated accordingly.

Regular Expression Union and Data Invariant Generation
After all regular expressions are generated, we need to find the union expression
RU , and subject it to defined security policies in order to determine whether the
tested program manifests any malicious behavior. The union module operates
on the control flow of the application and is complemented by a data invariance
module, which operates on the data properties of the application.

Regular expression union: Regular expression union is presented in Figure 3.
It recursively combines single-trace regular expressions, Rk, into RU , i.e.,

when Rk is generated, the following operation is performed: RU = RU

⋃
Rk.

As a starting point, RU = λ (empty regular expression). Upon combining RU

and Rk, if a path (by path, here, we mean a sequence of basic blocks executed
successively) in Rk already exists in RU , the execution id of the BBs in the
corresponding path are updated (step 1 in Figure 3). When a control transfer
basic block (denoted by BB jump) is encountered, if a new execution path
is simulated, the latter is handled by adding it as a new successor block of
BB jump (step 2). If no new path is executed, Union is recursively called on

Rk BB1 BB2 BB6 BB9BB3 BB4 BB5 BB7 BB8

Compare (BBi,BBj).
If blocks match:

(1) Update invariants .
(2) Update execution_id.

(Step 1)

BB_jump BB_jump/
BB_join_point

BB_join_point
path A path B

If BBi = BBj = BB_jump, check successor paths:
(1) If successor paths do not match, both paths

(paths A and A' in Rk and RkÕ) are added as
possible successors of BB_jump (BB2 and BBÕ2 in
Rk and RkÕ) in RU.
Add the two different successor paths until
BB_join_point (BB6 and BBÕ5 in Rk and RkÕ) is
reached (Step 2).

(2) If successor paths match, call Recursive
Union over the common path (paths B and B ' in Rk
and RkÕ).
Recursive call exits when BB_join_point (BB9 and
BBÕ8 in Rk and RkÕ) corresponding to BB_jump (BB6
and BBÕ5 in Rk and RkÕ) is reached (Step 3).

BBÕ1 BBÕ8RkÕ

BB_jump BB_jump/
BB_join_point BB_join_pointpath A' path B'

BBÕ2 BBÕ4BBÕ3 BBÕ5 BBÕ6 BBÕ7

BBU2 BBU11

BBU3 BBU4 BBU5

BBU6 BBU7

BB_jump:
BBU2 = (BBÕ2=BB2)

BB_jump
BB_join_point:
BBU8 = (BBÕ5 = BB6)

BB_join_point:
BBU11 = (BBÕ8 = BB9)

BBU1 BBU8 BBU9 BBU10RU

Fig. 3. Generating union regular expression
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Fig. 4. Malicious behavior detection:
Intersecting regular expression RU

with policy RPi
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the repeated execution path (step 3). Union’s recursive call exits when a join-
point (denoted by BB join point) is encountered. A BB join point is defined
as the point where different execution paths converge, i.e., the exit point of the
corresponding BB jump.

Data invariance module: This module formulates invariants obeyed by data at
specific blocks of RU . It gives insight into the properties of the program data that
might be useful in identifying malicious exploits. Although data invariants have
been proposed before to identify program bugs [26] or understand a program’s
behavior [27], our system tracks data modification across multiple executions
of a program and applies data invariants to the problem of detecting viruses.
The on-line data invariance module maintains multiple data invariant types at
various blocks of RU , which correspond to stored basic block properties.

A) Fields over which data invariants are defined: For the type of computer
viruses addressed in this paper, the data invariance module operates on the
following data elements of a regular expression basic block:

– Arguments of system and function calls that involve modification of a system
file or directory.

– Arguments of the “exec” function or any variants thereof.
– Arguments of functions creating symbolic and hard links.
– Size and address range of memory region access.
– Routine/thread/function names, addresses, and arguments.

B) Types of data invariants: The invariant types used are:
– Acceptable or unacceptable constant values – a value that a variable should

or should not assume, respectively.
– Acceptable or unacceptable range limits – the minimum and maximum val-

ues that a variable can assume or should not assume, respectively.
– Acceptable or unacceptable value sets – the set of values that a variable can

assume or should not assume, respectively.
– Acceptable or unacceptable functional invariants – a relationship within a

number of variables that should or should not be satisfied, respectively.
C) Updating data invariants: For each instrumented block, the data invari-
ance module extracts invariants, if any, that are obeyed by the basic block fields.
The module maintains single or multiple types of invariants for each field, start-
ing with the strictest invariant form (acceptable or unacceptable constant value)
and progressively relaxing the stored invariants to any of the forms listed above,
when combining Rk and RU and when new run-time values of the corresponding
fields are observed. When a data value from Rk does not satisfy a data invariant
stored in RU , this invariant is removed from within the basic block. For example,
let us observe a memory read size, SizememR, which assumes a constant value,
SizeR, until execution run i. If at execution run i + 1, the value of the memory
read size is SizeR′ , we eliminate the constant invariant type for the corresponding
memory size value and update the invariant to the following acceptable invariant
set type: SizememR ∈ {SizeR, SizeR′}. Deduced data invariants are used by the
detection and behavioral model generation modules described later.
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Security Policy Generator. This section describes the security policy genera-
tion process. We first describe various manifestations of virus behavior considered
in this work. Second, we explain the advantages of the proposed approach. Fi-
nally, we detail the security policies that we constructed based on the behavioral
traits of viruses.

Injuries and Infections of Malicious Code
While our approach can be applied to any form of malware and viruses, in this
paper, we focus our attention on defending against program/file viruses, which
target program and file objects and run independent of the file system in use
or the format of the file under attack, and exhibit various behaviors, injuries,
and infections. We next provide an overview of a compiled list of various effects,
injuries, and infections resulting from virus execution. This compilation is based
on the results of multiple research surveys, virus reverse engineering efforts, and
digital immune system findings [5,28]. We assume that a virus can inflict damage
in two ways: (i) direct injuries and (ii) injuries through the exploit of system
vulnerabilities. Although direct injuries can be alleviated by always running
untrusted programs as a user whose privileges to security-critical resources are
minimal, a virus can overcome such security measures, e.g., by modifying kernel
source files, provided it has write access on these files at a certain point. We
do not tackle the problem of how the virus gained access to the system (e.g.,
by exploiting vulnerabilities). We are interested in detecting this virus through
run-time instrumentation and monitoring of its execution, after it has gained
access to the system.
A) Link attacks (L.A.): Link attacks are a common form of virus injuries. They
are possible through exploitation of a window of vulnerability between two sys-
tem calls executed by a program, which, if executed with root privileges, allows
the virus code to gain privilege to sensitive information. Common malicious
injuries and infections executed after a link attack include:

– I1: Monopolizing executables, companion files, device drivers and loadable
kernel modules, kernel source files, etc. This includes overwriting, appending,
pre-pending, code injection, entry point obscuring, compression, etc.

– I2: Installing random benign or malicious applications.
– I3: Creating virus copies in a system directory under the existing OS (e.g.,

/sbin directory), and modifying configuration files to prompt virus execution.

B) Direct injuries and infections: These include I1, I2, and I3, mentioned above,
denoted here by DI1, DI2, and DI3, and other direct infections, e.g., creat-
ing new executable files, such as decrypted virus files in the case of obfuscated
viruses (DI4). Such injuries are possible if the virus is running with high system
privileges or with the same privileges associated with different components of
the file system.
C) Synchronized thread execution: A common property of many viruses is that
they work through multiple threads (multi-threaded or multi-fiber viruses) work-
ing by mutual exclusion. Threads can assume a multitude of roles, including:
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– Execute virus code on the underlying system.
– Listen to a network port accepting remote attacks.
– Modify system files needed by the virus in order to accomplish its intent.
– Send abnormal network traffic over a network, thus, depleting its resources.
– Exploit a local vulnerability and install a backdoor.
– Kill the virus process and delete its traces from the system.

Pin is able to instrument all threads present in a process. On the other hand,
since we do not address viruses from a network point of view, the Testing envi-
ronment is not configured for network access. If an internal infinite loop is caused
by lack of Internet connectivity, we trick the running process by changing the
value of the internal register holding the Internet connection status to one [14].
D) Scheduled execution and environmental constraints: Some viruses have the
property of executing upon satisfaction of a specific condition, such as time
or date, system start-up, etc. If those constraints are satisfied in the Testing
environment, the corresponding code is executed and subjected to the Testing
environment security policies. If constraints are satisfied only when execution
is moved to the Real environment, the associated code is treated as new and
subjected to the approach discussed in Section 3.2.
E) Depletion of memory and storage space (mem. depletion): Another virus in-
jury is utilizing system resources, such as memory, disk spaces, CPU cycles, and
exhausting them through chunks of code embedded within their software, e.g.,
infinite and scanning loops, infinite attempts to write to read-only memory, etc.

Advantages of Our Approach
Relying on virus symptoms in order to detect a virus (as performed by the ma-
jority of heuristic-based defense mechanisms) is not always accurate since these
same symptoms can result from hardware or software failures. Moreover, deriv-
ing a signature for each virus variant is not a scalable approach, especially, if we
consider the various ways of performing virus obfuscations. Therefore, we believe
that our approach, wherein detection is based on the fundamental functional be-
havior of virus execution and its interactions with system components, is a more
powerful defense against known and unknown viruses. Our method, which mon-
itors a virus in both Testing and Real environments, applies the concept of sand-
boxing. Sandboxing can take two different forms: (1) isolation of an untrusted
binary and restricting access privileges of the isolated environment [18,19,20],
and (2) confinement of untrusted code into an isolated environment, wherein
extensive analysis of the code behavior is performed (only few commercial prod-
ucts claim to perform this form of sandboxing [6]). We are not aware of any
previous work that performs malware defense based on fundamental behavioral
analysis, using the second form of sandboxing.

Generated Security Policies
We design the security policies to specify the fundamental traits of each malicious
behavior listed above. Each policy is translated into a regular expression RP

defined over alphabet σ = {bb1, bb2, ..., bbm}, where bbi is a basic block of the
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Table 1. Security policies in both high-level and regular expression-based specifications

High-level language specification ⇒ Regular expression-based specification [Malicious behavior]
Direct security policies

H1 =

⎧⎨
⎩

A symbolic or hard link of file X

to file Y with root read/write/

execute privilege ⇒ apply RP2

⇒ RP1 = [bb1.(bbk, k �= 2)*]*.bb2 ⇒ apply P2 [L.A.]

bb1: system calls link and symlink with arguments Y and X,
*: Kleene closure,

(bbk, k �= 2,...,n): any block not equal to subsequent security-critical bb,
bb2: X.inode = Y .inode or X.links = Y

H2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Modifications of file X by

instructions within another

vulnerable program B and no

link operation is contained

within B ⇒ Security violation

⇒ RP2 = [(bbk, k �= 1)*]*.bb2 ⇒ Security violation [I1]

bb1: symbolic or hard link of file X to Y in B,
bb2: modification of linked file X within file B

Programs B are detected by a thread running
in parallel to Pin, each B is instrumented thereafter

H3 =
{

Malicious executable modification

(Table 2) ⇒ Security violation
⇒ RP3 = bb1⇒ Security violation [I1, DI1]

bb1: file-related system call/function call
(malicious executable modification)

H4 =

⎧⎪⎪⎨
⎪⎪⎩

Modification of non-executables pointing

at instrumented untrusted code or code

generated by untrusted programs

⇒ Security violation

⇒ RP4 = bb1⇒ Security violation [I1, DI1]

bb1: malicious modifications of a non-executable file

H5 =

⎧⎪⎪⎨
⎪⎪⎩

Infinite or quasi-infinite

loops requiring extensive

access to resource R

⇒ Security violation

⇒ RP5 = [bb1.bb2...bbj]N⇒Violation [mem. depletion]

[bb1.bb2...bbj]: sequence of basic blocks requiring
intensive access to resource R, N � 1

Recursive security policies

H6 =

⎧⎨
⎩

Non-malicious executable (E) modification

⇒ Instrument modified executable

when executed

⇒ RP6 = bb1 ⇒ DBI of E [I1, DI1]

bb1: file-related system call (modification of E)

H7 =
{

“exec” function variant calls

⇒ Instrument “exec” argument (arg1)
⇒ RP7 = bb1 ⇒ DBI of arg1 [I2, DI2]

bb1: call to “exec” function variants

H8 =
{

Newly installed programs (P )
⇒ Instrument new programs

⇒ RP8 = bb1 ⇒ DBI of P [I2, DI2, I3, DI3, DI4]

bb1: newly installed program or newly created binary

security policy and embeds an action as specified in the high-level specification.
Equation (1) shows a high-level language specification template of a policy and
its regular expression structure. Policies given in Table 1 take the form of direct
and recursive policies. Recursive policies are applied a jth time when we cannot
determine whether the unknown program has manifested malicious behavior
after applying the policies j − 1 times. The rule of thumb we have applied is to
flag a malicious behavior when more than 10 recursive policy calls have occurred.
Table 2 presents the specific case of malicious executable modifications we have
taken into consideration (corresponding to security policy RP3).
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H=

⎧⎨
⎩

if Action1 then
... then Actionm

⇒ Action A
⇒ (RP = [bb1.(bbk, k �= 2, ..., m)∗]∗.[...]∗.bbm⇒A) (1)

Detection Module. In order to check the application’s RU against security
policy RPi, we design a regular expression intersection engine, which operates
as depicted in Figure 4. Intersection enables program analysis and automatic
malicious behavior detection. It works as follows: RU is scanned block by block
in a top-down manner (Step 1 in Figure 4), comparing the properties of its
successive basic blocks against the properties of RPi’s basic blocks. When a
control transfer block (BB jump) is encountered and BB jump has multiple
successors, Intersect is called recursively over each successor path (Step 2). In
case basic block BBh in RU matches basic block bbk in RPi, Intersect outputs
bbk into file Reg expJ for each bit J = 1 in BBh.execution id. At each match
between BBh and bbk, the string of bbi’s in each Reg expJ is matched, using
a standard string matching functionality, against the string representation of
RPi’s regular expression. If a match occurs, a malicious behavior is captured in
untrusted program execution.

Checkpointing and Behavioral Model Generation. This module extracts
basic blocks of RU to constitute a behavioral model M . M embeds, through its
reduced basic block set, permissible (or non-permissible) real-time behavior of
the unknown tested program. It is a model against which the execution of the
program should be monitored in the Real environment. Basic blocks in RU that
are checkpointed and added to model M can be one of the following: (1) condi-
tional control transfer basic blocks in order to keep track of executed program
paths, (2) basic blocks in RU , whose components reveal a security violation when
checked with the help of the policies in Table 1 (invariants stored in such blocks
are formulated as unacceptable), and (3) basic blocks in RU , whose components
confirm a permissible behavior (acceptable invariants are stored in such blocks).
By deriving model M , we reduce the number of invariants and the required

Table 2. Malicious modifications of executable files

Malicious modifications of executable files
File appending, pre-pending, overwriting with virus content or content derivatives
Overwriting executable cavity blocks (e.g., CC-00-99 blocks)
Code regeneration and integration of virus code within executable
Executable modifications to incorrect header sizes
Executable modifications to multiple headers
Executable modifications to headers incompatible with their respective sections
Modifications of control transfer instructions to point to malicious code
Modifications of function entry points to point to malicious code (API and function hooking)
Executable entry point obfuscations
Modifications of Thread Local Storage (TLS) table
Modifications to /proc/pid/exe
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Table 3. Flags and invariants embedded within behavioral model M

Flag Content of rele-
vant BB in RU

Run-time response Stored invariants

1. File Store Symbolic or hard
link from file X to
file Y

Store X.Path None

2. Indirect Verify Modification of X
at stored X.Path by
process B

Verify B.path against in-
variants. Abort execu-
tion if B satisfies invari-
ants

a. Inv1: B.path = P (P : acceptable
invariant of constant type)
b. Inv2: B.path ∈ set1 (set1: ac-
ceptable invariant set)
c. Inv3: B.path ∈R f(X) (f(X):
acceptable functional invariant, X:
environmental value upon which
B.path depends)

3. Mod Verify Allowed modifica-
tion of file F

Verify F.name against
data invariants. Abort
execution if invariants
are not satisfied

a. Inv1: F.name = C (C: accept-
able invariant of constant type)
b. Inv2: F.name ∈ set2 (set2: ac-
ceptable invariant set)
c. Inv3: F.name = ∈R f(X)
(f(X): acceptable functional invari-
ant)

4. No Mod Verify Not allowed modifi-
cation of file F

Verify F.name against
data invariants. Abort
execution if invariants
are satisfied

a. Inv1: F.name = C′ (C′: unac-
ceptable invariant of constant type)
b. Inv2: F.name ∈ set′

3 (set′
3: un-

acceptable invariant set)
c. Inv3: F.name = ∈R f ′(X)
(f ′(X): unacceptable functional in-
variant)

5. Loop Verify Loop requiring ex-
tensive memory us-
age/access

Limit a loop execution to
τ iterations

a. Inv1: loop.n [n = # of times a
loop has been executed] < τ (τ : a
constant value derived empirically)

6. Exec Verify Call to an “exec”
function variant

Verify exec.arg1.path
against data invariants.
Abort execution if in-
variants are not satisfied.
Else, check the execution
of exec.arg1.path against
its derived model M

a. Inv1: exec.arg1.path = P (P : ac-
ceptable invariant of constant type)
b. Inv2: exec.arg1.path ∈ set4
(set4 : acceptable invariant set)

7. Prog Verify Installation of a new
program or binary

Verify Pr.name against
data invariants. Abort
execution if invariants
are not satisfied. Else,
check the execution of Pr
against its model M

a. Inv1: Pr.name = C (C: accept-
able invariant of constant type)
b. Inv2: Pr.name ∈ set5 (set5 : ac-
ceptable invariant set)

storage space (as compared to the number of invariants and storage required by
RU ) by an average of 75.46% and 64.81%, respectively, for the different virus
benchmarks used.

In each basic block BBM of M , in addition to stored data invariants, a flag
is added in order to instruct the run-time monitor what kind of action needs to
be taken when BBM is reached. In Table 3, Column 1 lists the flags that can be
associated with any BBM , Column 2 the actions performed in the corresponding
RU ’s basic block, Column 3 the run-time actions to take when a flagged BBM

is reached, and Column 4 the various invariants stored at BBM .

Automatic Input Sequence Generation Technique. The effectiveness of
our tool considerably depends on code coverage, i.e., the number of paths exe-
cuted in the Testing environment and the number of triggered malicious
executions.
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In this section, we review a system (originally presented in [24]) that allows
automatically generated input sequences to exercise a high percentage of a pro-
gram’s paths and is based on static binary analysis and symbolic propagation.
While we realize the conservative nature of static analysis, we adopt this tech-
nique since it is able to leverage complete knowledge of a program’s structure
and to resolve first-level dependencies between a program input and its con-
trol flow. Moreover, pure dynamic analysis on unknown programs, used with
a random initial input, would be unable to explore all path possibilities. Fu-
ture work involves input generation based on a more efficient hybrid approach
combining static analysis refined by dynamic analysis performed in the Testing
environment.

Fig. 5. Automatic input sequence generation technique

Figure 5 depicts the flow of the input generation technique. Our system oper-
ates on a disassembled binary. It proceeds by using symbolic propagation analysis
to identify different input-dependent paths. It is basically a three-part system: (i)
pre-processing, (ii) generating path predicates, and (iii) solving path predicates.

A) Pre-processing: Prior to static analysis, disassembled binaries are pre-
process- ed in order to resolve loop unrolling and function calls. (1) Loop anal-
ysis is used to avoid infinite iterations. We limit the number of loop iterations
to τ , where τ iterations are sufficient for approximating a loop behavior and
the dependency of the loop condition on the input (τ = 5 worked well in our
experiments). (2) Function call analysis is necessary to allow a more accurate
propagation of symbolic inputs. Unless functions are linked dynamically, they
are replaced by their corresponding code in the disassembled binary.

B) Generating path predicates: Our system operates by generating the fol-
lowing formulas:
– Symbolic formulas representing input constraints at input-dependent in-

structions, which depend (or operate) on the symbolically propagated user-
input values.

– Two symbolic formulas representing input constraints at input-dependent
control transfer instructions.

– Concrete input-independent formulas at input-independent instructions.
Given each instruction, our system checks whether it depends on the symbolic

input, in which case, we translate the instruction to a Simple Theorem Prover
(STP) [29] conditional formula. STP is an efficient decision procedure for the
validity of a set of formulas. The translation is based on techniques presented
in [30] and [31].
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1. For instructions that perform binary, unary, and assignment operations, we
generate an STP LET expression, which binds a generated variable name to
the expression computed by the assembly instruction. For each operation,
we use the corresponding bitwise and arithmetic STP functions.

2. For conditional control transfers, we generate two formulas, thus resulting
in two sets of path predicates, one path where the current path continues
with the True branch and another path where the current path continues
with the False branch. Each control transfer instruction is translated into
two symbolic formulas using the corresponding STP predicates.

3. For assembly instructions that do not depend on the input, the operands are
set or abstracted to concrete values using the ASSERT STP function.

C) Solving path predicates: The solver that we use is STP, which has its own
built-in language with specific functions and predicates. For all generated path
conditions, the solver checks if the conditions are satisfiable. In case conditions
are satisfiable, it generates an input sequence triggering a new path execution.

We have implemented the approach above and tested it on various benchmarks
infected with known in-the-wild viruses. Results show that it is automatically
and efficiently able to generate (offline) inputs used in the Testing environment.
In the case where input sequences do not achieve a high coverage of an appli-
cation’s possible execution paths, they can be augmented with user-provided
inputs. Note that since STP is provided as a Linux library, Windows executables
in the Portable Executable (PE) format are first disassembled using the PEdump
Windows utility, the output of which is processed on a Linux system, following
the flow of Figure 5. Objdump is used to disassemble Linux executables in the
Executable and Linkable Format (ELF).

3.2 Design and Implementation of the Real Environment

This section describes the architecture of the Real environment, which performs
run-time monitoring and on-line prevention of malicious code execution. The
run-time monitoring mechanism is composed of two parts: the first part prevents
malicious execution in program paths already analyzed in the Testing environ-
ment by checking the basic blocks in the instrumented path against those of the
extracted behavioral model M ; the second part applies the conservative security
policies shown in Table 4 on newly executed paths. Both components, embedded
in the run-time monitor, prevent malicious attacks in the Real environment.

Table 4. Restrictive policies used in the Real environment

Restricted actions Restrictive policies
“exec” function variants Not allowed if model M was not generated for the executed argument
New installed programs Not allowed if model M was not generated for the programs
Non-executable modification Not allowed if files have root privileges
Loop execution Any loop is allowed to execute τ times only. τ is derived empirically
Executable modification Not allowed
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Figure 1(b) depicts a detailed architecture of the exploit prevention system
in the Real environment. The system consists of (1) the patching and run-time
monitoring module, and (2) the new execution path handler.

Patching and Run-time Monitoring Module: This module first loads the
extracted model M and then runs the application (using a user-provided input
sequence, in case the application is input-dependent) under DBI. The module
identifies the first instruction executed within a basic block and delineates its
boundaries. When a new basic block BB is identified, its run-time loaded address
is transformed into its standardized address format, which is checked against
the address of basic block BBM in M scanned so far. In case the two addresses
do not match, the instrumentation of instructions in BB is suspended until
a new basic block is identified. Otherwise, the instructions in BB need to be
instrumented, and appropriate components listed in Figure 2(b) are extracted
and checked against properties and components of BBM (Table 3, Column 3). If
check results do not reveal any security breach, BB’s instructions are allowed to
execute and commit. Otherwise, execution is aborted. If the instrumented BB
is a conditional control transfer basic block (i.e., BB = BB jump), the run-
time monitor identifies whether the first basic block executed after BB jump
corresponds to a path previously tested in the Testing environment.

New Execution Path Handler: If no new path is executed, the run-time
monitor compares the series of basic blocks in the given path against their cor-
responding blocks in model M . If a new path is executed, the set of restrictive
policies (Table 4) is enforced at run-time before any instruction completes exe-
cution in order to prevent any malicious attack. The new path instrumentation
proceeds until BB join point corresponding to BB jump is encountered. While
the restrictive policies would eventually result in some false positives, they keep
the overhead in the Real environment low and prevent the execution of mali-
cious code.

Basic blocks in newly executed paths, which did not cause execution to be
aborted due to violation of the restrictive security policies, are added to M . In
case a newly executed path violates a restrictive security policy, the execution
of an application is aborted.

4 Evaluation

This section presents the experimental evaluation of our approach in the Testing
and Real environments on both Windows and Linux OSs. Our results consist of
two parts. First, we investigate the accuracy of our tool in terms of detection
and prevention metrics, and false positives (FP) and negatives (FN) (Section
4.1). We then present how execution time is affected by our tool (Section 4.2).

4.1 Virus Detection Results

In order to explore the feasibility of our approach, we have designed and im-
plemented a prototype on both Linux and Windows OSs. On both OSs, our
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system is implemented as an on-access detection mechanism, in the sense that
all programs are first run in the Testing environment. Thus, any malicious code
will be intercepted and analyzed prior to execution in its Real environment.

For the Linux OS, the system used is a 3.2GHz Intel Pentium IV PC running
XenLinux 2.6. Xen [32] is an open-source virtual machine monitor that supports
the execution of multiple OSs. We use Xen to build two virtual domains, executed
in isolation, in order to set up the Testing and Real execution environments. Xen’s
domain 0, which is a privileged management domain, is used in order to create
both domains, and securely migrate information (behavioral model M), through
Xen’s S-Hype security hooks, between them. For the Windows OS, we have
implemented each of the environments as a custom-installed VMWare [33] virtual
Windows XP OS image on a 3.2GHz Intel Pentium IV PC running Windows
XP. M is migrated manually between the two environments.

On both OSs, we developed our tool based on Pin [25], which provides a rich
API for building a variety of instrumentation tools. Under Linux, detection of
file modifications occurs at the system call-interception level. Under Windows,
detection of file modifications occurs at the Windows API (WinAPI) function
call/CRC-based WinAPI function call/system call-interception levels. (CRC cor-
responds to Cyclic Redundancy Check, CRC-based WinAPI function calls basi-
cally mean that WinAPI function names are not visible in the virus code image.
Instead, function calls occur through matching of the checksum of the function
names or addresses to CRC values calculated within the virus code.)

Our virus collection consisted of 72 real-world Linux viruses and 45 Windows
viruses [34,35]. The virus collection contained both in-the-wild [e.g., the Binom,
Bliss, and Neox viruses on Linux and the Zombie (Zmist virus version for Win-
dows XP), Cleevix, Looked-BG, and Shrug viruses on Windows] and in-the-zoo
viruses. Furthermore, we obfuscated the available Linux and Windows viruses
using ELFCrypt [36] and UPX [37], and Obfuscator [38], respectively. We also
ran our tool on multiple benign programs that exhibit behaviors that closely
resemble those manifested by computer viruses, such as gcc, javac, gawk, and
nasm for Linux, and tasm, tlink, and lcc for Windows (45 programs for Linux
and 28 programs for Windows). We also tested our approach on infected versions
of those programs.

Next, we present the code and path coverage of the tested applications, the
virus detection result in the Testing environment, and finally the effectiveness of
the prevention mechanism in the Real environment.

Code and Path Coverage. The efficiency of our approach is bounded by the
number of paths covered in the Testing environment. Following the input genera-
tion method described earlier, we cover 93.68% of the paths in input-dependent
programs on an average. Generated input sequences can be augmented with
user-provided input in the case where they do not achieve a high coverage of an
application’s possible execution paths. Another issue to address while defending
against computer viruses is time and environmental constraints that restrain
virus execution. The approaches in [17,31] detect such constraints, as specified
in a pre-compiled constraint list, and force them to become true in order to
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analyze a malware instance. Such a framework can be integrated within our sys-
tem; however, for the time being, we assume that any non-executed path in the
Testing environment is compensated for in the Real environment.

Virus Detection Rate in the Testing Environment. We have evaluated
the effectiveness of our tool in the Testing environment by running it on the
aforementioned viruses and benchmarks. Table 5 summarizes the results of our
experiments, and Table 6 details the specific malicious executable modifications
(as listed in Table 2) that were observed amongst tested viruses. Note that a
single virus can have multiple malicious effects and can inflict multiple mali-
cious modifications. We can see that our system has correctly classified almost
all viruses and benign programs. It falsely declared one Linux virus and two
Windows viruses [rows 6 and 19 (last rows corresponding to the virus category
under the Linux and Windows XP OSs, respectively) in Table 5] to be benign. By
manually checking the control data flow graph related to the three non-identified
viruses and their resulting effects on our system, we observed that their execu-
tion did not inflict any of the malicious effects specified in our security policies.
Table 7 compares the performance of our system, in detecting original [Det. rate
(Orig.V.)] and obfuscated [Det. rate (Obf.V.)] viruses, with that of widely used
anti-virus (AV) products. We can see that our approach largely outperforms all
tested AV tools, and even the combination of all tools (union of the sets of viruses
detected by each of the tools), as shown in the Union AV row in Table 7. How-
ever, one limitation of our approach, as can be seen for the case of non-detected
virus instances, is its dependency on the accuracy of the security policies, and
the completeness of the set of malicious behaviors these policies cover.

Virus Defense in the Real Environment. Behavioral models extracted in
the Testing environment, in addition to the restrictive security policies of Table 4,
successfully halted the execution of any malicious code in the Real environment.
For input-dependent binaries, we have tested our approach in the Real environ-
ment using a set of inputs that was used in the Testing environment and another
that was not used. Experiments in the Real environment resulted in new execu-
tion paths only 6.8% of the time. No false positives were encountered. However,
due to the nature of the restrictive policies imposed on the new execution paths,
we expect a small percentage of false positives to occur if spawned by adequate
user-inputs.

4.2 Execution Time Overheads

This section describes how execution time is affected by our tool in both the
Testing and Real environments.

Testing Environment: The key components in this environment that con-
tribute to execution time are: (i) t1: time required by binary instrumentation,
(ii) t2: time required by the regular expression module, (iii) t3: time required
by the detection module, and (iv) t4: time required by the checkpointing and
behavioral model generation module. Table 8 reports execution times for the dif-
ferent sets of viruses and benign and infected open-source benchmarks on both
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Table 5. Detection and false alarm results in the Testing environment

Category #viruses Suspicious effects triggering Malicious effects FN FP
recursive policy calls

Linux OS
Viruses 60 0 malicious ELF modifications 0 0
Viruses 5 “exec” function variant malicious exec.arg1 0 0
Viruses 3 newly created binaries malicious binary 0 0
Viruses 2 0 extensive memory access 0 0
Viruses 1 non-malicious ELF modifications malicious ELF execution 0 0
Viruses 1 0 ELF modification not 1 0

specified in Table 2
Obfuscated viruses 153 0 malicious ELF modifications 0 0
Obfuscated viruses 15 “exec” function variant malicious exec.arg1 0 0
Obfuscated viruses 12 newly created binaries malicious binary 0 0
Obfuscated viruses 6 0 extensive memory access 0 0
Obfuscated viruses 3 non-malicious ELF modifications malicious ELF execution 0 0
Benign programs 36 0 0 0 0
Benign programs 3 “exec” function variant 0 0 0
Benign programs 1 non-executable modifications 0 0 0
Benign programs 5 newly created binaries 0 0 0
Infected programs 45 0 malicious ELF modifications 0 0

Windows XP OS
Viruses 42 0 malicious PE modifications 0 0
Viruses 1 0 extensive memory access 0 0
Viruses 2 0 ELF modification not 2 0

specified in Table 2
Obfuscated viruses 21 0 malicious PE modifications 0 0
Benign programs 1 non-malicious PE modifications 0 0 0
Benign programs 2 non-executable modifications 0 0 0
Benign programs 2 newly created binaries 0 0 0
Benign programs 23 0 0 0 0
Infected programs 20 0 malicious PE modifications 0 0

Table 6. Observed malicious ELF/PE modifications

#viruses Malicious executable modification type
Linux OS - ELF modifications

53 Entry point obfuscation [entry point virtual address (e entry), replace nop with jmp in-
structions, jump addresses]

10 Virus appending [end of ELF file, end of .debug section, end of .text section]
4 Overwriting with virus code [.text section]
2 proc/pid/exe modification
7 Cavity block overwriting [.text section, insertion of jmp instructions]

Windows XP OS - PE modifications
34 Entry point obfuscation [relative virtual address entry (AddressofEntryPoint), .reloc entries,

jump addresses]
7 API hooking [Kernel32.dll, .idata section]
4 Cavity block overwriting [.reloc section, PE header]
6 Virus appending [end of PE file, end of .reloc section]
1 TLS table modification
2 Overwriting with virus code [.reloc section]
1 Header incompatible with .reloc section
1 Virus integration within PE file
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Table 7. Comparison of detection results against anti-virus products

AV product Detection type Det. rate (Orig.V.) (%) Det. rate (Obf.V.) (%)
Linux OS

Clam Signature-based 80.55 38.89
F-prot Signature/heuristics 44.44 1.39
Avira Signature/heuristics 97.22 50.00
AVG Signature-based 97.22 34.72

Sophos Signature/heuristics/emulation 76.39 0.00
Union AV 97.22 51.39
Our system 100.00 100.00

Windows XP OS
Avira Signature/heuristics 85.71 47.61

Kaspersky Signature/heuristics 28.57 9.52
Panda Signature/heuristics 33.33 4.76
F-prot Signature/heuristics 95.23 57.14
Eset Signature/heuristics/emulation 90.48 57.14

Union AV 95.23 57.14
Our system 100.00 100.00

Table 8. Execution times in the Testing and Real environments

Benchmarks Testing environment Real environment

#BB t1 t2 t3 t4 T.I. #BBM t′
1 t′

2 t′
3 t.i. T.R.

(sec.) (sec.) (sec.) (sec.) (X) (sec.) (msec.) (msec.) (X) (X)

Linux OS

Viruses 2102 0.82 8.66 0.34 0.11 20.82 951 0.44 56.92 14.61 1.07 19.41

Obfuscated viruses 3686 1.01 8.92 0.42 0.13 21.59 1482 0.47 62.70 14.62 1.12 19.11

Benign programs 10601 16.11 209.47 2.12 0.32 32.07 5925 8.82 372.22 68.00 1.30 24.62

Infected programs 11972 19.99 230.28 2.58 0.37 32.74 6299 9.75 381.12 n/a 1.31 24.99

Windows XP OS

Viruses 2740 1.10 9.82 0.47 0.13 22.47 1247 0.54 60.41 n/a 1.17 19.21

Obfuscated viruses 3977 1.46 10.48 0.48 0.16 22.81 1629 0.61 70.04 n/a 1.23 18.49

Benign programs 15395 17.57 273.91 2.48 0.41 37.18 8562 9.93 482.93 n/a 1.31 28.28

Infected programs 17937 20.47 286.19 2.60 0.43 38.92 9001 10.23 490.41 n/a 1.35 28.89

Linux and Windows OSs. Column 1 corresponds to the executed benchmark set,
Column 2 lists the number of basic blocks in RU (#BB) extracted as an aver-
age for all benchmarks in a given set. Columns 3-6 report the average total time
required by each of the above-mentioned components. Reported times are based
on an average of 40 executions per benchmark. User input-dependent benign
and infected open-source programs were tested using automatically generated
inputs, augmented with user-provided inputs when necessary. Column 7 reports
the average total increase in execution time (T.I.) induced by all modules (as
compared to running the benchmarks without any security checks).

The execution time induced in the Testing environment (Table 8) is quite
significant (the execution time goes up to an average of 26.81X on Linux and
30.35X on Windows). However, we can argue that this incurred time is accept-
able and does not impose a severe limitation, since our tool performs off-line
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detection in the Testing environment, transparently to the user, while subject-
ing the application to rigorous checks.

Real Environment: Performance in this environment is evaluated while the
run-time monitor is running in parallel with the program, and performing checks
against behavioral model M and the list of restrictive security policies (Table 4).
The key components that contribute to execution time in the Real environment
are: (i) t′1: time required by binary instrumentation, (ii) t′2: time required for
checking against behavioral model M , and (iii) t′3: time required for testing a
new execution path and rebuilding M . Table 8 reports an average (over 32 execu-
tions) of the different time components for different benchmark sets in Columns
9-11. Column 8 lists the average number of basic blocks checked at run-time [i.e.,
number of blocks in M (#BBM )]. Column 12 reports the average total execu-
tion time increase (t.i.) in the Real environment as compared to running a stan-
dalone benchmark set without any security prevention measurements applied to
it. Column 13 reports the average execution time reduction (T.R.) between the
Testing and Real environments. The execution time goes up to an average of
1.20X (1.26X) on the Linux (Windows) OS in the Real environment [maximum
of 1.31X (1.35X) and minimum of 1.07X (1.17X)]. This increase in execution
time is quite minimal and compensates for the high slowdowns imposed in the
Testing environment [to an average of 22.03X (23.72X)].

5 Conclusion

Current techniques fall short of meeting the challenges posed by the dramatic
increase of malware threats, leading to escalating financial, time, productivity,
and information losses. This suggests the need for a new approach for designing
defense mechanisms against malware. We believe that the system we introduced
in this paper is a highly efficient, practical, and scalable way to prevent a wide
range of computer malware, in particular computer viruses, which are tackled
here, from inflicting damage. We applied our tool to successfully detect a number
of real-world computer viruses. The use of an abstracted behavioral model for
system monitoring in the Real execution environment results in an acceptable
performance penalty incurred by the user at run-time.

Limitations of our approach include its dependency on the accuracy of the
security policies used and the number of observed paths, in particular, observed
malicious paths, in the Testing environment. In our future work, we plan to
explore ways to augment our static input generation technique with dynamic
analysis, as the software is executed in the Testing environment. Also, we plan
to investigate the efficiency of our approach in defending against polymorphic,
self-modifying, and code integration-based viruses.
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Abstract. Embedded malware is a recently discovered security threat
that allows malcode to be hidden inside a benign file. It has been shown
that embedded malware is not detected by commercial antivirus software
even when the malware signature is present in the antivirus database.
In this paper, we present a novel anomaly detection scheme to detect
embedded malware. We first analyze byte sequences in benign files to
show that benign files’ data generally exhibit a 1-st order dependence
structure. Consequently, conditional n-grams provide a more meaningful
representation of a file’s statistical properties than traditional n-grams.
To capture and leverage this correlation structure for embedded malware
detection, we model the conditional distributions as Markov n-grams. For
embedded malware detection, we use an information-theoretic measure,
called entropy rate, to quantify changes in Markov n-gram distributions
observed in a file. We show that the entropy rate of Markov n-grams
gets significantly perturbed at malcode embedding locations, and there-
fore can act as a robust feature for embedded malware detection. We
evaluate the proposed Markov n-gram detector on a comprehensive mal-
ware dataset consisting of more than 37, 000 malware samples and 1, 800
benign samples of six well-known filetypes. We show that the Markov
n-gram detector provides better detection and false positive rates than
the only existing embedded malware detection scheme.

1 Introduction

Malware sophistication has evolved considerably during the last decade. In par-
ticular, due to emerging financial motivations for attackers, malware trends are
now shifting towards stealthy attacks. The challenge faced by stealthy malcode
is to reach vulnerable hosts undetected and then to stay undetected on the hosts.
‘The longer a threat remains undiscovered in the wild, the more opportunity it
has to compromise computers before measures can be taken to protect against
it. Furthermore, its ability to steal information increases the longer it remains
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undetected on a compromised computer’ [1]. Code obfuscation, (self-)encryption
and polymorphism are commonly-used code transformations that are used by
stealthy malware to avoid detection.

In their seminal work, Stolfo et al. discovered a new type of stealthy threat
called embedded malware [2]. Under this threat, the attacker embeds the ma-
licious code or file inside a benign file on the target host. It was shown that
embedded malware cannot be detected by signature-based antivirus detectors
even if a malware’s exact signature is present in the detector’s database [2], [3].
In fact, intelligently infected files can even be opened by their respective applica-
tion software without providing any observable hint of the infection. Intelligent
embedding can be further enhanced to allow automatic execution of embedded
malcode when the benign file is opened [3]. Embedded malware is potentially
a serious security threat and accurate anomaly detection techniques must be
developed to mitigate it.

In this paper, we propose a novel statistical anomaly detection scheme for em-
bedded malware detection. Using correlation analysis, we first show that benign
files exhibit a clear 1-st order dependence structure which can be modeled using
Markov chains. We therefore propose to characterize the statistical properties
of a benign file using conditional n-gram distributions, referred to as Markov
n-grams, instead of the traditional n-grams. For embedded malware detection,
we compute running Markov n-grams over non-overlapping windows in a file.
We then use an information-theoretic measure, called entropy rate, to quantify
perturbations in the Markov n-grams due to embedded malware. The results of
our experiments show that the entropy rate of Markov n-grams gets significantly
perturbed at malware embedding locations. For automated detection, we observe
that the aggregate entropy rate distribution of benign files approaches Gaussian-
ity for large training samples1. Therefore, a statistical range of benign entropy
rates can be defined using the parameters of the baseline Gaussian distribution.
Entropy rate values outside this range can then be classified as malicious.

We compare the proposed Markov n-gram detector with the only known
embedded malware detector [2] using two comprehensive and diverse infected
datasets. The first dataset is created by randomly embedding malware into
benign files. The second dataset is created by randomly embedding naively
encrypted malware into benign files. Both datasets are generated from 1, 800
benign samples (including DOC, EXE, JPG, MP3, PDF and ZIP files) and 37, 420 mal-
ware samples (containing viruses, worms trojans, spyware, and exploit codes).
We show that the Markov n-gram detector consistently outperforms the only
existing embedded malware detector [2] in terms of both detection and false
positive rates. In comparison to commercial-of-the-shelf (COTS) antivirus (AV)
software, our detector provides a significantly higher detection rate at the cost of
higher false positive rates. Therefore, we argue that, due to their complementary
strengths, very high accuracy can be achieved when the Markov n-gram detector
is deployed in conjunction with COTS AV software.

1 This is a direct consequence of the central limit theorem.
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Organization of the Paper. The rest of the paper is organized as follows. We
present realistic attack scenarios for embedded malware in Section 2. In Section
3, we provide an overview of related research in the field of embedded malware
detection. We then discuss in detail the infected datasets created for our research
work in Section 4. Section 5 summarizes the results of our pilot experimental
studies. In Section 6, we propose our Markov n-gram detector and in Section 7
we compare the detection accuracy of our proposed detector with other relevant
techniques and state-of-the-art antivirus products using the infected datasets. In
Section 8, we discuss the limitations of the proposed Markov n-gram detector.
Finally, we conclude the paper with an outlook to our future work.

2 Attack Scenarios

In this section, we discuss potential real world attack scenarios that can be
realized using embedded malware:
– As demonstrated in [3] and independently verified by us, ‘intelligently’ em-

bedded malware inside benign (document, media or application) files does
not affect their integrity as these infected files continue to open by their re-
spective application software. In fact, our experimental studies have shown
that even in the case of naive (i.e., completely random) malware embedding,
10% DOC files, 13% EXE files, 90% JPG files, 100% MP3 files, 92% PDF and 95%
ZIP continue to open with or without an error message. Moreover, most of
the infected files are undetected by COTS AV software. Thus an attacker
can embed malware inside common benign files –for instance, a PDF help file
or a common executable file like WINWORD.EXE– and the infected file will go
unnoticed through the COTS AV software deployed inside the network or
on the host. Such infected files can be transported to different hosts using
well-known peer-to-peer file sharing software or by making the file freely
available for download. Later on, a user can be tricked into starting a trigger
program (in the form of a plug-in or a macro) to launch the malicious code.
Examples of similar attacks have recently been reported in [3]–[6].

– Disabling macros and plug-ins is not a viable option because there are many
useful benign programs (e.g., MathType, Adobe PDF printer, flash player,
etc.) that are launched as macros or plug-ins. Also, in [3] the authors show
that the ‘object oriented dynamic composability of modern document’ for-
mats such as DOC, PPT and PDF allows the user to include embedded objects
such as video clips, wave sounds or bitmap images inside a document. The
embedded objects can be invoked by simply clicking on the object. An at-
tacker can create a fake embedded object which, in addition to some benign
looking activity, executes the malcode [3].

– In our pilot studies, we have observed that MP3 song files can serve as very
potent carriers of embedded malware; 100% infected MP3 files (with embed-
ded malware) play from start to finish without any error or degradation in
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quality2. Since most Internet song sharing portals use the MP3 file format, an
attacker can use random embedding to infect a benign MP3 file by a malware
and then can distribute the infected file via Internet song sharing portals or
peer-to-peer file sharing software.

3 Related Work

A significant amount of research effort has recently been focused towards mal-
ware detection. To maintain focus, in this section, we describe only those ap-
proaches that target embedded malware.

– Stolfo et al. extended their previous work on identification of filetypes us-
ing n-gram analysis in [2]. In their earlier analysis, called fileprint analysis,
they calculated 1-gram byte distribution of a file and compared it to various
models of different file types for eventual identification of the filetype. In
the context of malware detection, their work focused on embedded malware
detection only in PDF and DOC files. They used 3 different models for repre-
senting the benign distributions namely single centroid, multi-centroids and
exemplar files as centroids. Mahanalobis distance was calculated between the
distributions obtained from these models and the n-gram distribution of a
given file. To avoid repetition, details of these techniques will be provided in
subsequent sections.

The authors experimented with 1-gram (byte level) and 2-gram (word level)
distributions. They tested their proposed scheme on a dataset comprising 31
benign application executables, 331 benign executables in the System32 folder
and 571 viruses. The results of their experiments demonstrated that their
scheme was able to detect a considerable proportionof the malicious files. How-
ever their approach was not capable of identifying the exact location of the
embedded malware in a benign file. Therefore, it is impossible to devise an ef-
fective healing strategy for the infected files using their approach.

– In [3], the authors proposed two approaches for embedded malware detection
in Microsoft Word documents. The first approach is based on static analysis
and the second approach is based on run time dynamic analysis. In the static
analysis approach, they used an open source application to decompose Word
files into their constituent structures. They used a 5-gram model for benign
and malicious documents because it provided reasonable memory and de-
tection accuracy. Based on the 5-gram model for benign and malicious word
documents, a “similarity” score was generated for both models for eventual
classification. In dynamic analysis approach, they have employed sandbox-
based tests to check OS crashes, unexpected changes to the underlying en-
vironment, and nonfatal application errors. However, it is acknowledged by
the authors that the dynamic analysis approach is not practical to be used
as an independent detection scheme.

2 This is due to the frame-based structure of MP3 files. Each frame in the MP3 file
format is preceded by a re-sync marker. Corrupt frames (without re-sync markers)
are simply bypassed by the media players during playback.
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Table 1. Statistics of Benign Files used in this Study

File type Quantity Average Size Minimum Size Maximum Size
(kilo-bytes) (kilo-bytes) (kilo-bytes)

DOC 300 1, 015.2 44 7, 706
EXE 300 4, 095.0 48 15, 005
JPG 300 1, 097.8 3 1, 629
MP3 300 3, 384.4 654 6, 210
PDF 300 1, 513.1 25 20, 188
ZIP 300 1, 489.6 8 9, 860

4 Data

In this section, we first describe the benign and malware datasets used in this
paper. We then introduce our tool NERGAL that embeds any given infection at
any random location within a benign file. Using this tool, we produce a large
embedded malware dataset3.

4.1 Benign Dataset

The benign dataset for our experiments consists of six different filetypes: DOC,
EXE, JPG, MP3, PDF and ZIP. These filetypes encompass a broad spectrum of
commonly used files ranging from compressed to redundant and from executables
to document files. Each set of benign files contained 300 typical samples of the
corresponding filetype, which provide us a total of 1, 800 benign files. We ensured
the generality of the benign dataset by randomizing the sample sources. More
specifically, we queried well known search engines with random keywords to
collect these files. In addition, we also collected typical samples on the local
network of our virology lab.

Some pertinent statistics of the benign dataset used in this study are tabulated
in Table 1. It can be observed from Table 1 that the benign files have diverse sizes
varying from 3 KB to 20 MB, with an average file size of approximately 2 MB. We
show later in the paper that this diversity in file sizes provides valuable insights
into an important aspect of embedded malware detection, that is, whether or
not a detector is able to detect the embedded malware in large files where the
statistical contents of the malicious code are simply averaged out.

The executable files collected for this study include both compiled and com-
pressed (installation) executables. The ZIP, JPG, and MP3 file formats are in-
herently compressed so the n-grams on the data portion of these files should
provide distributions that are fairly uniform. Evaluation and detection of em-
bedded malware in these uniform distributions is an important issue which was
originally raised in [2].

4.2 Malware Dataset

Malware samples, especially recent ones, are not easily available on the Internet.
Computer security corporations do have an extensive malware collection, but
3 The complete dataset and the tool, NERGAL, are publicly available at http://www.
nexginrc.org
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Table 2. Statistics of Malware used in this Study

Major Category Minor Category Quantity Average Size Minimum Size Maximum Size
(kilo-bytes) (bytes) (kilo-bytes)

Backdoor Win32 3,444 285.6 56 9, 502
Constructor DOS 178 104.2 62 7, 241
Constructor Win32 172 398.5 371 5, 971

Email Flooder - 148 343.5 1, 430 4, 262
Email Worm Win32 935 73.5 148 762

Exploit - 242 101.1 370 1, 912
Flooder - 154 168.1 486 981

IRC Worm - 485 34.4 56 1, 072
Nuker - 140 188.1 4, 000 680
Trojan BAT 649 20.2 12 708
Trojan DOS 971 27.0 4 1, 818
Trojan Win32 983 125.4 12 2, 998
Virus Boot 1,514 32.5 108 1, 490
Virus DOS 16,236 18.7 5 1, 860
Virus MS Office 2,596 53.5 118 4, 980
Virus Win32 991 44.3 175 1, 018
Worm Win32 153 110.5 97 2, 733

unfortunately they do not share their malware databases on the Internet. We
could only locate ‘VX Heavens Virus Collection’ [11] database which is available
for free download in the public domain. This is a comprehensive database that
contains a total of 37, 420 malware samples. The sample consists of backdoors,
constructors, flooders, nukers, sniffers, droppers, spyware, viruses, worms and
trojans etc.

A detailed description of the malware used in our study is provided in Table
2. The average malware size in this dataset is 64.2 KB. Note that this size is
significantly larger than the average size (2 MB) of the benign files. Moreover,
the sizes of malware samples used in our study vary from 4 bytes to more than
14 MB. Clearly, small sized malware are harder to detect than larger ones.

4.3 Infected Dataset

We developed an inhouse software tool, called NERGAL, that could insert an in-
fection into benign files at any given location in the benign file. NERGAL ensure
that the infections are inserted after the header of the benign files to avoid file
corruption. The tool also generates a detailed infection report, which provides
details about the sample malware that was used to infect each benign sample
and its offset in each sample.

We have created two infected datasets for this study. The first infected dataset
is created by simple embedding malware inside benign files. The second infected
dataset is created by encrypting the malware before embedding. We use the
ROT-13 Caesar cipher for malware encryption. While more sophisticated en-
cryption techniques are certainly possible, we use a simple substitution cipher
because it does not alter the inherent statistical properties of the malcode. There-
fore, while COTS AV software will not be able to detect this naively encrypted
malcode, we can intuitively argue that the accuracy of anomaly detection tech-
niques should remain unaffected under this simple encryption. (We show later
that this is not the case.)
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The complete virus dataset is used for every filetype mentioned in the benign
dataset. Therefore, the embedded malware dataset for each filetype consists of
37, 420 files and the total number of files in both infected datasets are 449, 040.
The average file size in both datasets is 2, 267.5 KB.

5 Pilot Experimental Studies

In this section, we repeat and extend the pilot experiments of [2] on our infected
dataset. Moreover, we evaluate the accuracy of the Mahanalobis distance based
detector which was proposed in [2].

In [2], the authors proposed to use n-gram analysis for embedded malware
detection. An n-gram of a sequence is a normalized frequency histogram (or the
distribution) of n bit symbols in the sequence. Stolfo et al. [2] used 1-Centroid,
Multi-Centroids and Exemplar files as centroids for modeling benign and mal-
ware files. 1-gram and 2-gram distributions were used for this purpose. Ma-
hanalobis distances of a given (unknown) file from the benign and the malware
model were used for classification. We also wanted to compare our proposed
scheme with the static detection approach proposed of [3]. However, it was not
possible because their approach is specific to Microsoft Word and similar docu-
ment formats.

Before evaluating the previous work, we highlight that two desirable accuracy
objectives of an embedded malware detector are: 1) to detect infected files and 2)
to identify the likely location of the embedded infection. We refer to these two
objectives as detection and location identification, respectively. The technique
of [3] reported a reasonable detection accuracy when the infection appeared at
the start or the end of a file. However, their proposed scheme could not provide
location identification.

5.1 Whole File n-Grams for Embedded Malware Detection

One major assumption of the prior study was that the infection appears only at
the start or the end of the benign file [2]. Therefore, n-gram analysis was applied
only on the truncated files [2]. We argue that this assumption is unrealistic
because it is not capable of detecting embedded malware in the middle of the
file. In fact, in our experiments we observed that malware embedded at the start
of benign files is detected more frequently by COTS AV software than malware
embedded in the middle. Therefore, a pragmatic embedded malware detector
should look at the statistical contents of an entire file rather than focussing
on a specific location4. We hence revoke the assumption of file truncation and
compute n-grams on whole files.

4 Here we acknowledge the complexity incurred by n-gram analysis of whole files.
Nevertheless, we tradeoff complexity for accuracy throughout this paper. In other
words, we expect that the proposed detector will be complemented by signature-
based detector.



Embedded Malware Detection Using Markov n-Grams 95

(a) 1-gram histograms of benign
and infected PDF file

(b) 1-gram histograms of benign
and infected JPG file

Fig. 1. Comparison of 1-gram histograms of benign and infected files

Figures 1(a) and 1(b) show the comparison of whole file 1-grams of sample
benign and infected PDF and JPG files, respectively5. It can be clearly seen that
no discernable change in the 1-grams is evident in Figures 1(a) and 1(b). It
can be intuitively argued that whole file 1-grams of infected files do not change
when the size of the benign file is significantly larger than the malware size
because the statistical contents of the embedded malware are averaged out by
large amounts of benign data. (Recall that the average sizes of the benign and
malware files in Tables 1 and 2 were 2 MB and 64.2 KB, respectively.) This
situation is quite common because malware are generally designed to have small
sizes to make them fit inside buffer overflows/file pads/email attachments or to
avoid network-based detection during an initial downloading stage.

5.2 Block-Wise n-Grams for Embedded Malware’s Location
Identification

The authors in [2] carried out n-gram analysis of a file in a block-wise manner
in order to detect the exact location of the embedded malware. Experiments
were repeated using block sizes of 500 bytes and 1000 bytes. The significance
of the block size is that it sets an approximate bound on the minimum size of
malware that can be possibly detected. We repeated these block-wise n-gram
experiments on our datasets as well. Figure 2 shows some representative results
of the Mahanalobis distance between the block-wise 1-gram distribution and the
benign file model. We use a block size of 1000 bytes and plot the Mahanalobis
distance between every block and the benign file model; qualitatively similar
results were obtained for other block sizes. One can see in Figure 2 that the block-
wise 1-gram Mahanalobis distance does not provide significant perturbations
that could help in detecting the embedded malware. Figure 2(a) shows the best
results with a considerable drop in the Mahanalobis distance. However, one can
also observe similar or even larger drops in the benign file regions as well.

Another trend to be observed from Figures 2(a) and 2(b) is that the distance
value stays more or less constant in the embedded malware blocks. Interestingly,
however, even these trends could not be considered as a common feature across

5 Byte value 0 has the highest frequency because of zero padding that is used for block
alignment.
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(a) Block-wise 1-gram
Mahanalobis distance
for an infected EXE file

(b) Block-wise 1-gram
Mahanalobis distance
for an infected PDF file

(c) Block-wise 1-gram
Mahanalobis distance
for an infected DOC file

Fig. 2. Block-wise 1-gram Mahanalobis distance is unable to show significant pertur-
bations in the infected regions. The horizontal thick bars show the location of the
embedded malware.

all our experiments as depicted in Figure 2(c). Thus, the Mahanalobis distance
of 1-gram distribution of the infected files does not provide us with any concrete
measure to robustly detect the embedded malware.

As a logical improvement of 1-gram analysis, we repeated our experiments
to analyze the behavior of block-wise Mahanalobis distances of 2-gram distribu-
tions; block size is 1000 bytes. Figure 3 shows some representative results for the
2-gram block-wise Mahanalobis distance. These experiments reveal that, despite
the increased computational complexity, the performance of the Mahanalobis
distance based detector does not improve significantly. Figure 3(a) is an excep-
tion where the 2-gram clearly shows discernable decrease in the Mahanalobis
distance. Here, we can intuitively argue that the block size of 1000 bytes does
not provide enough data to compute an effective statistical distribution. Specifi-
cally, in case of 2-gram distribution we only have 1000 data values to fill 65, 536
bins. The ratio (data values to distribution bins) of about 1 : 65 for 2-gram
is in stark contrast to the ratio of about 4 : 1 for 1-gram using the block size
of 1000 bytes. A simple solution to this problem is to increase the block size.
However, as stated previously, the block size roughly defines the lower bound
on the minimum size of malware that can be detected. Therefore, there is an
inherent tradeoff between the block size and the minimum malware size that can
be detected: increasing the block size means higher false negative rates thereby
degrading the accuracy of the detector. This reason stopped us from increasing
the value of n and we did not extend our study beyond 2-grams.

5.3 Discussion

The pilot studies of this section indicate that the block-wise Mahanalobis dis-
tance of 1- and 2-gram distributions cannot accurately detect embedded mal-
ware. At this point, we conjecture that either n-gram analysis is not a good
method for embedded malware detection or Mahanalobis distance is not a good
enough quantification measure for differentiating between benign and malicious
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(a) Block-wise 2-gram
Mahanalobis distance
for an infected EXE file

(b) Block wise 2-gram
Mahanalobis distance
for an infected PDF file

(c) Block wise 2-gram
Mahanalobis distance
for an infected DOC file

Fig. 3. Block-wise 2-gram Mahanalobis distance is also unable to show significant per-
turbations in the infected regions. The horizontal thick bars show the location of the
embedded malware.

n-grams. Let us first analyze the latter conjecture which will inadvertently lead
us to a substantiation of the former. To quantify changes in the n-gram distribu-
tions, we use the entropy measure which has been quite effective in quantifying
changes in traffic feature distributions [9].

Entropy measures the degree of dispersal or concentration of a distribution
[10]. In information-theoretic terms, entropy of a probability distribution defines
the minimum average number of bits that a source requires to transmit symbols
according to that distribution. Let X be a discrete random variable such that
X = {xi, i ∈ Δn}, where Δn is the image of the random variable. Then entropy
of X is defined as:

H(X) = −
∑

i∈Δn

p(xi) log2 p(xi). (1)

For the present embedded malware detection problem, if the statistical contents
of the malware are different from the benign file, then entropy of the block-
wise distribution on the infected file should change at the embedding location.
We, however, observed that entropy calculation on 2-grams provide qualitatively
similar results to the Mahanalobis distance.

The failure of both Mahanalobis distance and entropy measures further
strengthens our conjecture that a simple n-gram distribution does not provide
sufficient information to detect embedded malware. Consequently, a detector
based on simple n-grams meets neither the detection nor the location identi-
fication objectives that we set at the beginning of this section. To rectify this
shortcoming in the n-gram distributions, in the following we provide a different
method of computing n-grams in the following sections.

6 Modeling and Quantification of n-Gram Information

We first note that the 2-gram distribution is in fact the joint distribution of two
1-gram symbols. This joint distribution may contain some redundant information
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(a) Autocorrelation
results for benign EXE
file

(b) Autocorrelation
results for benign DOC
file

(c) Autocorrelation re-
sults for Code Red II
worm

Fig. 4. Autocorrelation function of byte distributions of benign files shows 1-st order
dependence. Autocorrelation function of the byte distribution for Code Red II worm
shows that the structure of the 1-st order spatial dependence is disturbed.

which is not pertinent to the present embedded malware detection problem. For
accurate detection, it is important that this redundancy is removed. To this end,
we analyzed a number of statistical properties of the benign files’ n-grams. One
relevant property that provided us interesting insights into statistical properties
of file data was the analysis of byte level autocorrelation of benign files.

6.1 Correlation in File Data

Autocorrelation describes the correlation between the random variables in a
stochastic process at different points in time. For a given lag k, the autocorrela-
tion function of a stochastic process, Xi (where i is the time index) is defined as:

ρ[k] =
E{X0Xk} − E{X0}E{Xk}

σX0σXk

, (2)

where E{.} represents the expectation operation and σXi is the standard de-
viation of the random variable at time lag i. The value of the autocorrelation
function lies in the range [−1, 1], where ρ[k] = 1 means perfect correlation at lag
k (which is obviously true for k = 0) and ρ[k] = 0 means no correlation at all at
lag k.

To observe the level of spatial dependence in the byte sequences of benign
files, we computed their sample autocorrelation functions. Figures 4(a) and 4(b)
show the autocorrelation function plotted versus the lag for EXE and DOC files,
respectively. These autocorrelation results clearly show that the byte sequences
in benign files have 1-st order dependence because the autocorrelation value
takes a fairly significant dip at k = 2 and remains constant for higher values
of lag. In other words, once a byte Si appears, it is more likely that it will be
followed by Si at the next byte location. Clearly, if we are in a zero padded
region of a benign file, a zero valued symbol is highly likely to be followed by
another zero valued symbol.

This 1-st order spatial dependence of benign files has direct implications on
the present embedded malware detection problem mainly because this structure
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is not observed in malware files, see Figure 4(c). In fact, instead of the 1-st order
dependence, we can instead observe high correlation at k = 6, 12, and 18. This
lack of 1-st order spatial dependence of a malware can be easily observed by
examining the signature of the Code Red II Worm given below [8]:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%ucbd3
%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a HTTP/1.0

We can see in the signature of Code Red II that it consists of sub-blocks of 6
bytes, as a result, the high correlation values are observed at k = 6 or its integral
multiples.

Discussion. In addition to the CodeRed example shown in Figure 4(c), we also
conducted correlation experiments on other malware and benign filetypes. These
correlation results were consistent with the already presented results. We hence
deduce that the 1-st order dependence structure due to zero pads in benign files
is not present in malcode. This result is also intuitive because a main objective
of effective malcode development is to limit the size of the malcode. (Small sized
malware can fit into buffer overflows and can avoid arousing suspicion during
transmission over the network.) This objective is clearly defeated if an attacker
allows a large zero pads inside the malcode file.

We note that the difference in 1-st order correlation structure of benign and
malicious files is actually a distinguishing feature that can be used to detect
embedded malware. Therefore, in the following section we model and quantify
this distinguishing feature.

6.2 A Statistical Model of Benign Byte Sequences

We now focus on developing a model for the correlation structure observed in
benign files. Since the correlation shows 1-st order dependence, the underlying
random process (i.e., the byte sequence of benign files in the present context) can
be modeled using an order-1, discrete time Markov chain [10]. Here we note that
a Markov chain characterizes a process in terms of conditional distribution of
its states. For a byte level distribution, a Markov representation simply implies
28 = 256 conditional probability distributions, each corresponding to a different
byte value. These conditional distributions reduce the size of the underlying
sample space which in the present problem corresponds to removing redundant
information from the joint distribution.

The Markov Chain used to model the conditional byte distribution is an
order-1 (256 state) Markov chain. The transition probabilities are computed by
counting the number of times byte i is followed by byte j. These probabilities can
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also be expressed as a transition probability matrix. If the probability of moving
from state i to j is pi,j , then the transition matrix for the present problem is
given by:

P =

⎡
⎢⎢⎢⎣

p0,0 p0,1 . . . p0,255
p1,0 p1,1 . . . p1,255
...

...
. . . . . .

p255,0 p255,1 . . . p255,255

⎤
⎥⎥⎥⎦

Each row of this transition probability matrix provides the conditional distribu-
tion for a distinct byte value. Thus the total number of variables that characterize
this random process (65, 536 floating point values) is the same as the 2-gram dis-
tribution. However, these Markov chains provide an alternative, non redundant
and conditional representation of the jointly distributed 2-gram values. Hence-
forth, we refer to this representation as Markov n-grams.

We now need an accurate measure that can quantify changes in the Markov
transition probabilities. This measure is presented in the following section.

6.3 Quantification of Perturbations in Markov n-Grams

We need a mathematical measure to quantify changes or perturbations in the
Markov n-gram’s transition probability matrix. To this end, we use an informa-
tion theoretic measure, called entropy rate, which quantifies the time density of
the average information in a stochastic process [10]. Entropy rate for a sequence
of discrete finite random variables X1, X2,..., Xn is defined as:

R = lim
N→∞

H(X1, X2, ..., Xn)
N

, (3)

where H(X1, X2, . . . , Xn) is the joint entropy of random variables X1, X2, . . . , Xn.
R does not exist in general. However, for the present n-gram Markov chain with
256 states, the entropy rate can be computed using (1) as:

R =
255∑
i=0

πiH(Xi), (4)

where πi represents the equilibrium probability of being in state i and H(Xi) is
the entropy of the conditional distribution of state i (i.e., the entropy of row i
of the transition probability matrix).

Asymptotic properties of the entropy rate measure are applicable only in case
of stationary Markov chains [10]. We acknowledge that in general stationarity
will not hold for the present problem. However, the entropy rate expression does
provide us with the expected entropy of a discrete time Markov chain. Since
we rely on the premise that the statistical properties of the embedded malware
will be different from the statistical properties of the benign file in which it is
embedded, expected entropy of the consequent Markov chain (derived from the
infected file) should be perturbed at the embedding locations.
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(a) DOC (b) EXE (c) JPG

(d) MP3 (e) PDF (f) ZIP

Fig. 5. Entropy Rate of infected files. The horizontal thick bars show the location of
the embedded malware.

Figure 5 shows the entropy rate of infected files of every filetype used in
our study. It is clear from Figure 5 that the perturbation is more profound
as compared to those obtained using 1-gram Mahanalobis distance or 2-gram
Mahanalobis distance. This clearly verifies our earlier hypothesis that the con-
ditional distribution discards the redundant information contained in the joint
n gram distribution, thus providing us a compact representation of the file data.

The results of Figure 5 show that the entropy rate of Markov n-grams can
quantify and highlight perturbations at the locations of the embedded malware.
Thus this measure satisfies the detection and location identification objectives
that we have set for an effective embedded malware detector. However, for auto-
mated detection, we must threshold entropy rate values above and below which
an infection would be detected. The following section provides a flexible yet
accurate method of defining this threshold.

6.4 Classification Using Entropy Rate Thresholding

For classification purposes, we need to set an appropriate threshold value on the
block-wise entropy rate values. For this purpose, we develop a generic model
of block-wise entropy rate values in the benign files. During our pilot studies,
we observed that the block-wise values of entropy rates varied in the range
of [0, 3]. Therefore, we generated an entropy rate histogram using 300 equal
sized bins. We normalized this histogram to obtain the sampled entropy rate
distribution. Figure 6 shows that the sum of sampled entropy rate distributions
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(a) DOC (b) EXE (c) JPG

(d) MP3 (e) PDF (f) ZIP

Fig. 6. Sampled entropy rate distributions for different filetypes

approaches Gaussianity as the number of samples (i.e., the benign files used for
training) approaches infinity. This is a consequence of the central limit theorem
which asserts that, for independent finite variance entropy rate distributions, an
aggregated distribution should be normally distributed.

Normal distribution is completely specified by its first and second central
moments: mean (μ) and variance (σ2). Since 99.99% of the times a normal dis-
tribution does not deviate from its mean by more than 5 standard deviations,
we can set the upper and lower detection thresholds as: ηlow = μ − 5σ and
ηhigh = μ + 5σ, respectively. Moreover, we integrate the sampled entropy rate
distribution of a test file outside these points to obtain area at the fringes of the
distribution and set a classification threshold k on this area. If the area outside
the [ηlow, ηhigh] range is greater than k then the test file is classified as malicious.
Conversely, if the area inside the [ηlow, ηhigh] range is less than or equal to (1−k)
only then an alarm is raised. The value of this threshold was tuned for the best
performance in the ROC space using a randomly sampled training dataset which
was 5% of the total testing dataset [16]. Suitable values of this threshold were
different for different filetypes. The highest value of k was observed for the DOC
filetype. An intuitive feel for the high value of k for DOC files can be developed
with the help of Figure 6. DOC filetype shows worst convergence to Gaussianity,
i.e., significant amount of area is present at the fringes (see Figure 6(a)). This
logically leads us to set a relatively higher value of the threshold (k) for DOC files.

Discussion. Based on the results of this section, we conclude that entropy rate
of Markov n-grams can achieve both accuracy objectives (i.e., detection and
location identification) that we expect from an embedded malware detector. To
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the best of the authors’ knowledge, the location identification objective cannot
be achieved by any existing embedded malware detector. Moreover, and again
in contrast to existing techniques [2], [3], malware data is not required to train
our proposed detector. This makes the Markov n-gram detector a true anomaly
detector that detects maliciousness by flagging deviations from a robust model of
normal behavior. In addition to these desirable properties, the following section
shows that the proposed detector provides better accuracy than existing schemes.

7 Classification Results

As mentioned in Section 4, we perform classification on two infected datasets,
each consisting of 224, 520 infected files created by infecting benign files of six
common types: DOC, EXE, JPG, MP3, PDF, ZIP. For the training of our proposed
scheme, we use 5% of the benign dataset.

Table 3 provides the detection rates of 3 fully updated6 commercial antivirus
products: McAfee Antivirus [12], AVG Antivirus [14] and Kaspersky Antivirus
[13], and our Markov n-gram detector. The results tabulated in Table 3 reaffirm
that: commercial antivirus products are not effective in detecting embedded mal-
ware. Moreover, and as expectd, the detection rate for all COTS AV software
degrade to 0% for the encrypted dataset. The false positive rates for these AV
products are also 0% because they mostly use signature-based scanning tech-
niques. Mahanalobis n-gram detector performs much better than COTS AV
software. However, its performance also degrades for the encrypted dataset. In
comparison, our proposed Markov n-gram detector achieves the best average
detection rate with a reasonable average false positive rate. Furthermore, the
accuracy of the Markov n-gram detector persists for the encrypted dataset. This
is because entropy of a random variable is not dependent on the values or image
of the underlying random variable. Therefore, a shift in the histogram does not
change the entropy rate values.

The reason for less than 100% detection rate of Markov n-gram detector can
be traced back to our earlier comment in Section 5.2: the lower bound on size
of detectable embedded malware is roughly set by the block’s size. Now recall
that we have used a block size of 1000 bytes, while the size of 23.6% files in
the VX Heavens malware dataset ([11]) is less than 1000 bytes. Nevertheless,
even under this block’s size limitation, the smallest malware that the proposed
Markov n-gram detector is able to detect is Worm.Win32.Netsp, which is only
343 bytes. We also note that 8.2% of files in the VX Heavens malware dataset are
smaller than 343 bytes. These file comprise malware that the proposed detector
is unable to detect.

We argue that it is not entirely fair to compare the accuracy of the Markov
n-gram detector with the scheme proposed in [2] because their scheme focuses on
detection while ignoring location identification, whereas the detector proposed
in this paper caters for both of these objectives. Despite this fact, the accuracy
of the Markov n-gram detector is significantly higher than the Mahanalobis
6 By January 2008.
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Table 3. Detection (TP) rate and False Positive (FP) rate of Antivirus and Anomaly
Detectors

McAfee AVG Kaspersky Mahanalobis Markov Percentage
Antivirus Antivirus Antivirus n-gram n-gram Improvement

[12] [14] [13] Detector Detector
unencrypted DOC

TP rate 0.1% 0.0% 0.0% 65.6% 66.3% 0.7%
FP rate 0.0% 0.0% 0.0% 48.8% 29.2% 19.6%

encrypted DOC

TP rate 0.0% 0.0% 0.0% 57.6% 67.7% 10.1%
FP rate 0.0% 0.0% 0.0% 46.2% 31.4% 14.8%

unencrypted EXE

TP rate 2.7% 1.3% 0.1% 54.1% 84.9% 30.8%
FP rate 0.0% 0.0% 0.0% 47.3% 16.7% 10.6%

encrypted EXE

TP rate 0.0% 0.0% 0.0% 56.1% 84.5% 28.4%
FP rate 0.0% 0.0% 0.0% 54.3% 17.2% 37.1%

unencrypted JPG

TP rate 0.0% 0.0% 0.0% 76.3% 95.4% 19.1%
FP rate 0.0% 0.0% 0.0% 35.7% 2.7% 33.0%

encrypted JPG

TP rate 0.0% 0.0% 0.0% 68.9% 94.6% 25.7%
FP rate 0.0% 0.0% 0.0% 46.7% 3.5% 43.2%

unencrypted MP3

TP rate 0.0% 0.0% 0.0% 63.8% 95.0% 31.2%
FP rate 0.0% 0.0% 0.0% 32.3% 0.2% 32.1%

encrypted MP3

TP rate 0.0% 0.0% 0.0% 58.6% 96.1% 37.5%
FP rate 0.0% 0.0% 0.0% 48.3% 0.2% 48.1%

unencrypted PDF

TP rate 5.2% 2.5% 3.6% 75.4 % 84.5% 9.1%
FP rate 0.0% 0.0% 0.0% 46.8% 31.8% 15.0%

encrypted PDF

TP rate 0.0% 0.0% 0.0% 63.2% 84.8% 21.6%
FP rate 0.0% 0.0% 0.0% 45.5% 31.9% 13.6%

unencrypted ZIP

TP rate 0.0% 0.0% 0.0% 60.0% 90.4% 30.4%
FP rate 0.0% 0.0% 0.0% 29.9% 8.3% 21.6%

encrypted ZIP

TP rate 0.0% 0.0% 0.0% 55.5% 90.6% 35.1%
FP rate 0.0% 0.0% 0.0% 28.0% 8.9% 19.1%

detector. The bold right column in Table 3 gives the percentage improvement
in the TP rate and the FP rate for the Markov n-gram detector as compared to
the Mahanalobis n-gram detector. It can be observed that the TP rate of the
Markov n-gram detector is on the average 20.2% and 26.4% greater than the
TP rate of the Mahanalobis detector for non-encrypted and encrypted datasets,
respectively. Similarly, the FP rate of the Markov n-gram detector is on the
average 21.9% and 29.3% smaller than the FP rate of Mahanalobis detector for
non-encrypted and encrypted datasets, respectively. The clearly indicates the
superior detection accuracy and robustness of our proposed detector as compared
to the detector proposed by the authors in [2].

We, however, do admit that the FP rates for DOC and PDF files are still sig-
nificantly high albeit much smaller as compared to the Mahanalobis detector.
Our investigation revealed that embedded objects are allowed both in PDF and
DOC files. The entropy rate at the location of these objects, at times, also shows
a significant perturbation. As a result, our detector is mislead to classify these
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objects as malware. We will shortly introduce our hybrid strategy that will solve
this problem of high FP rate.

Another important conclusion of the research by the authors in [2] is: if the
size of the benign file in which the infection is inserted is between 10 KB and 10
MB then on the average the false positive rate of their scheme surges to 50%.
In comparison, our scheme has two desirable features: 1) capability to identify
block/blocks of benign file in which the infection was inserted; 2) a significantly
smaller false positive rate relative to the Mahanalobis n-gram detector. Here,
we must note that sizes of more than 90% of the benign files in our dataset
also lie in the 10 KB to 10 MB range (average size = 2 MB). This encouraging
performance clearly substantiates the potential of the Markov n-gram detector
for embedded malware detection.

8 Limitations of the Markov n-Gram Detector

In this section, we present the limitations of the Markov n-gram detector pro-
posed in this paper.

– The first, and perhaps the biggest, shortcoming of the proposed Markov n-
gram detector is its high false positive rate for certain types of files. We,
however, believe that these false positives can be significantly reduced if we
use the proposed detector as a preprocessor to the COTS AV detection soft-
ware. During this preprocessing stage, the Markov n-gram detector can be
utilized to detect the presence and the location of embedded malware inside
a benign file, albeit with false positives. We can then extract a small portion
of the file around the infected location into a separate standalone file. The
COTS AV software can then scan the new (extracted) file for the presence
of a known malcode signature. Clearly, this hybrid detection strategy will
significantly lower the false positives, while still maintaining the high detec-
tion rate of our detector. This hybrid detection strategy is only realizable
because our detector can identify the location of the embedded malware.

– One form of the embedded malware discussed in this paper is dormant (see
Section 2 for more details), which does not pose any direct threat to the
victim machine. The dormant form of embedded malware requires another
program (such as a trojan) to extract and activate it. As a results, this
problem is similar to detecting watermarks or steganographic content. It
is unlikely that our scheme will detect a malware embedded using the ad-
vanced steganographic embedding schemes. However, the use of advanced
steganographic schemes have two major drawbacks when considered in the
context of embedded malware: 1) the steganographic embedding and extrac-
tion algorithms have high memory and computational overheads; 2) they
are media specific, i.e. they are specific for images, audio or video content,
so they cannot be generalized to all filetypes. The first drawback implies
that the steganographic extraction algorithm should be present on the vic-
tim machine. Transfer of extraction program to the victim machine is an
additional and undesirable overhead. Also, the computational overhead, at
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the victim machine, imposed due to the extraction algorithm allows for host
based anomaly detection. The second drawback limits the scope of the threat
posed by embedded malware.

– Since the underlying principle of our proposed detector is based on statistical
analysis, a crafty attacker may launch a mimicry attack [17] by modifying
the malcode to have a benign looking statistical distribution [3]. Polymor-
phic attack engines can be used to modify the statistical distribution of a
code segment to avoid detection by our proposed detector. This unfortunate
limitation is not specific to the Markov n-gram detector and is applicable
to any anomaly detector, including the Mahanalobis n-gram detector and
COTS AV software [17].

9 Conclusions

In this paper, we proposed a novel embedded malware detection scheme based
on the principles of statistical anomaly detection. This scheme, to the best of
our knowledge, is the first anomaly based malware detection approach that has
the capability to locate the position of the infection in an infected file. Our
proposed Markov n-gram detector has significantly better detection rate than
exiting detectors. Moreover, due to its ability to identify the location of an
embedded malware, the proposed detector can provide very low false positive
rates when used in conjunction with existing COTS AV software.
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Abstract. Malicious software in form of Internet worms, computer viruses, and
Trojan horses poses a major threat to the security of networked systems. The
diversity and amount of its variants severely undermine the e ectiveness of clas-
sical signature-based detection. Yet variants of malware families share typical
behavioral patterns reflecting its origin and purpose. We aim to exploit these
shared patterns for classification of malware and propose a method for learning
and discrimination of malware behavior. Our method proceeds in three stages: (a)
behavior of collected malware is monitored in a sandbox environment, (b) based
on a corpus of malware labeled by an anti-virus scanner a malware behavior
classifier is trained using learning techniques and (c) discriminative features of
the behavior models are ranked for explanation of classification decisions. Exper-
iments with di erent heterogeneous test data collected over several months using
honeypots demonstrate the e ectiveness of our method, especially in detecting
novel instances of malware families previously not recognized by commercial
anti-virus software.

1 Introduction

Proliferation of malware poses a major threat to modern information technology. Ac-
cording to a recent report by Microsoft [1], every third scan for malware results in a
positive detection. Security of modern computer systems thus critically depends on the
ability to keep anti-malware products up-to-date and abreast of current malware devel-
opments. This has proved to be a daunting task. Malware has evolved into a powerful
instrument for illegal commercial activity, and a significant e ort is made by its authors
to thwart detection by anti-malware products. As a result, new malware variants are dis-
covered at an alarmingly high rate, some malware families featuring tens of thousands
of currently known variants.

In order to stay alive in the arms race against malware writers, developers of anti-
malware software heavily rely on automatic malware analysis tools. Unfortunately, mal-
ware analysis is obstructed by hiding techniques such as polymorphism and obfuscation.
These techniques are especially e ective against byte-level content analysis [18, 20]
and static malware analysis methods [8, 10, 12]. In contrast to static techniques, dy-
namic analysis of binaries during run-time enables monitoring of malware behavior,
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which is more di cult to conceal. Hence, a substantial amount of recent work has fo-
cused on development of tools for collecting, monitoring and run-time analysis of mal-
ware [3, 5, 6, 15, 23, 24, 26, 28, 37, 39].

Yet the means for collection and run-time analysis of malware by itself is not suf-
ficient to alleviate a threat posed by novel malware. What is needed is the ability to
automatically infer characteristics from observed malware behavior that are essential
for detection and categorization of malware. Such characteristics can be used for sig-
nature updates or as an input for adjustment of heuristic rules deployed in malware
detection tools. The method for automatic classification of malware behavior proposed
in this contribution develops such a characterization of previously unknown malware
instances by providing answers to the following questions:

1. Does an unknown malware instance belong to a known malware family or does it
constitute a novel malware strain?

2. What behavioral features are discriminative for distinguishing instances of one
malware family from those of other families?

We address these questions by proposing a methodology for learning the behavior of
malware from labeled samples and constructing models capable of classifying unknown
variants of known malware families while rejecting behavior of benign binaries and
malware families not considered during learning. The key elements of this approach
are the following:

(a) Malware binaries are collected via honeypots and spam-traps, and malware family
labels are generated by running an anti-virus tool on each binary. To assess behav-
ioral patterns shared by instances of the same malware family, the behavior of each
binary is monitored in a sandbox environment and behavior-based analysis reports
summarizing operations, such as opening an outgoing IRC connection or stopping
a network service, are generated. Technical details on the collection of our malware
corpus and the monitoring of malware behavior are provided in Sections 3.1–3.2.

(b) The learning algorithm in our methodology embeds the generated analysis reports
in a high-dimensional vector space and learns a discriminative model for each mal-
ware family, i.e., a function that, being applied to behavioral patterns of an unknown
malware instance, predicts whether this instance belongs to a known family or not.
Combining decisions of individual discriminative models provides an answer to the
first question stated above. The embedding and learning procedures are presented
in Sections 3.3– 3.4.

(c) To understand the importance of specific features for classification of malware be-
havior, we exploit the fact that our learning model is defined by weights of behav-
ioral patterns encountered during the learning phase. By sorting these weights and
considering the most prominent patterns, we obtain characteristic features for each
malware family. Details of this feature ranking are provided in Section 3.5.

We have evaluated our method on a large corpus of recent malware obtained from
honeypots and spam-traps. Our results show that 70% of malware instances not identi-
fied by an anti-virus software can be correctly classified by our approach. Although such
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accuracy may not seem impressive, in practice it means that the proposed method would
provide correct detections in two thirds of hard cases when anti-malware products fail.
We have also performed, as a sanity check, classification of benign executables against
known malware families, and observed 100% detection accuracy. This confirms that
the features learned from the training corpus are indeed characteristic for malware and
not obtained by chance. The manual analysis of most prominent features produced by
our discriminative models has produced insights into the relationships between known
malware families. Details of experimental evaluation of our method are provided in
Section 4.

2 Related Work

Extensive literature exists on static analysis of malicious binaries, e.g. [8, 10, 19, 21].
While static analysis o ers a significant improvement in malware detection accuracy
compared to traditional pattern matching, its main weakness lies in the di culty to
handle obfuscated and self-modifying code [34]. Moreover, recent work of Moser et al.
presents obfuscation techniques that are provably NP-hard for static analysis [25].

Dynamic malware analysis techniques have previously focused on obtaining reliable
and accurate information on execution of malicious programs [5, 6, 11, 24, 39, 40].
As it was mentioned in the introduction, the main focus of our work lies in automatic
processing of information collected from dynamic malware analysis. Two techniques
for behavior-based malware analysis using clustering of behavior reports have been
recently proposed [4, 22]. Both methods transform reports of observed behavior into
sequences and use sequential distances (the normalized compression distance and the
edit distance, respectively) to group them into clusters which are believed to correspond
to malware families. The main di culty of clustering methods stems from their unsu-
pervised nature, i.e., the lack of any external information provided to guide analysis of
data. Let us illustrate some practical problems of clustering-based approaches.

A major issue for any clustering method is to decide how many clusters are present in
the data. As it is pointed out by Bailey et al. [4], there is a trade-o between cluster size
and the number of clusters controlled by a parameter called consistency which mea-
sures a ratio between intra-cluster and inter-cluster variation. A good clustering should
exhibit high consistency, i.e., uniform behavior should be observed within clusters and
heterogeneous behavior between di erent clusters. Yet in the case of malware behavior
– which is heterogeneous by its nature – this seemingly trivial observation implies that
a large number of small classes is observed if consistency is to be kept high. The re-
sults in [4] yield a compelling evidence to this phenomenon: given 100% consistency,
a clustering algorithm generated from a total of 3,698 malware samples 403 clusters,
of which 206 (51%) contain just one single executable. What a practitioner is looking
for, however, is exactly the opposite: a small number of large clusters in which vari-
ants belong to the same family. The only way to attain this e ect using consistency is
to play with di erent consistency levels, which (a) defeats the purpose of automatic
classification and (b) may still be di cult to attain at a single consistency level.

Another recent approach to dynamic malware analysis is based on mining of ma-
licious behavior reports [9]. Its main idea is to identify di erences between malware
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samples and benign executables, which can be used as specification of malicious be-
havior (malspecs). In contrast to this work, the aim of our approach is discrimination
between families of malware instead of discrimination between specific malware in-
stances and benign executables.

3 Methodology

Current malware is characterized by rich and versatile behavior, although large families
of malware, such as all variants of the Allaple worm, share common behavioral patterns,
e.g., acquiring and locking of particular mutexes on infected systems. We aim to exploit
these shared patterns using machine learning techniques and propose a method capable
of automatically classifying malware families based on their behavior. An outline of our
learning approach is given by the following basic steps:

1. Data acquisition. A corpus of malware binaries currently spreading in the wild is
collected using a variety of techniques, such as honeypots and spam-traps. An anti-
virus engine is applied to identify known malware instances and to enable learning
and subsequent classification of family-specific behavior.

2. Behavior Monitoring. Malware binaries are executed and monitored in a sandbox
environment. Based on state changes in the environment – in terms of API function
calls – a behavior-based analysis report is generated.

3. Feature Extraction. Features reflecting behavioral patterns, such as opening a file,
locking a mutex, or setting a registry key, are extracted from the analysis reports
and used to embed the malware behavior into a high-dimensional vector space.

4. Learning and Classification. Machine learning techniques are applied for identify-
ing the shared behavior of each malware family. Finally, a combined classifier for
all families is constructed and applied to di erent testing data.

5. Explanation. The discriminative model for each malware family is analyzed us-
ing the weight vector expressing the contribution of behavioral patterns. The most
prominent patterns yield insights into the classification model and reveal relations
between malware families.

In the following sections we discuss these individual steps and corresponding tech-
nical background in more detail – providing examples of analysis reports, describing
the vectorial representation, and explaining the applied learning algorithms.

3.1 Malware Corpus for Learning

Our malware collection used for learning and subsequent classification of malware be-
havior comprises more than 10,000 unique samples obtained using di erent collection
techniques. The majority of these samples was gathered via nepenthes, a honeypot solu-
tion optimized for malware collection [3]. The basic principle of nepenthes is to emulate
only the vulnerable parts of an exploitable network service: a piece of self-replicating
malware spreading in the wild will be tricked into exploiting the emulated vulnerabil-
ity. By automatically analyzing the received payload, we can then obtain a binary copy
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Table 1. Malware families assigned by Avira AntiVir in malware corpus of 10,072 samples. The
numbers in brackets indicate occurrences of each malware family in the corpus.

1: Backdoor.VanBot (91) 8: Worm.Korgo (244)
2: Trojan.Bancos (279) 9: Worm.Parite (1215)
3: Trojan.Banker (834) 10: Worm.PoeBot (140)
4: Worm.Allaple (1500) 11: Worm.RBot (1399)
5: Worm.Doomber (426) 12: Worm.Sality (661)
6: Worm.Gobot (777) 13: Worm.SdBot (777)
7: Worm.IRCBot (229) 14: Worm.Virut (1500)

of the malware itself. This leads to an e ective solution for collecting self-propagating
malware such as a wide variety of worms and bots. Additionally, our data corpus con-
tains malware samples collected via spam-traps. We closely monitor several mailboxes
and catch malware propagating via malicious e-mails, e.g., via links embedded in mes-
sage bodies or attachments of e-mails. With the help of spam-traps, we are able to obtain
malware such as Trojan horses and network backdoors.

The capturing procedure based on honeypots and spam-traps ensures that all sam-
ples in the corpus are malicious, as they were either collected while exploiting a vul-
nerability in a network service or contained in malicious e-mail content. Moreover, the
resulting learning corpus is current, as all malware binaries were collected within 5
months (starting from May 2007) and reflect malware families actively spreading in
the wild. In the current prototype, we focus on samples collected via honeypots and
spam-traps. However, our general methodology on malware classification can be easily
extended to include further malware classes, such as rootkits and other forms of non-
self-propagating malware, by supplying the corpus with additional collection sources.

After collecting malware samples, we applied the anti-virus (AV) engine Avira An-
tiVir [2] to partition the corpus into common families of malware, such as variants
of RBot, SDBot and Gobot. We chose Avira AntiVir as it had one of the best detec-
tion rates of 29 products in a recent AV-Test and detected 99.29% of 874,822 unique
malware samples [36]. We selected the 14 malware families obtained from the most
common labels assigned by Avira AntiVir on our malware corpus. These families listed
in Table 1 represent a broad range of malware classes such as Trojan horses, Internet
worms and bots. Note that binaries not identified by Avira AntiVir are excluded from
the malware corpus. Furthermore, the contribution of each family is restricted to a max-
imum of 1,500 samples resulting in 10,072 unique binaries of 14 families.

Using an AV engine for labeling malware families introduces a problem: AV labels
are generated by human analysts and are prone to errors. However, the learning method
employed in our approach (Section 3.4) is well-known for its generalization ability
in presence of classification noise [35]. Moreover, our methodology is not bound to a
particular AV engine and our setup can easily be adapted to other AV engines and labels
or a combination thereof.

3.2 Monitoring Malware Behavior

The behavior of malware samples in our corpus is monitored using CWSandbox – an
analysis software generating reports of observed program operations [39]. The samples
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are executed for a limited time in a native Windows environment and their behavior is
logged during run-time. CWSandbox implements this monitoring by using a technique
called API hooking [14]. Based on the run-time observations, a detailed report is gener-
ated comprising, among others, the following information for each analyzed binary:

– Changes to the file system, e.g., creation, modification or deletion of files.
– Changes to the Windows registry, e.g., creation or modification of registry keys.
– Infection of running processes, e.g., to insert malicious code into other processes.
– Creation and acquiring of mutexes, e.g. for exclusive access to system resources.
– Network activity and transfer, e.g., outbound IRC connections or ping scans.
– Starting and stopping of Windows services, e.g., to stop common AV software.

Figure 1 provides examples of observed operations contained in analysis reports,
e.g., copying of a file to another location or setting a registry key to a particular value.
Note, that the tool provides a high-level summary of the observed events and often more
than one related API call is aggregated into a single operation.

Fig. 1. Examples of operations as reported by CWSandbox during run-time analysis of di erent
malware binaries. The IP address in the fifth example is sanitized.

3.3 Feature Extraction and Embedding

The analysis reports provide detailed information about malware behavior, yet raw re-
ports are not suitable for application of learning techniques as these usually operate on
vectorial data. To address this issue we derive a generic technique for mapping analysis
reports to a high-dimensional feature space.

Our approach builds on the vector space model and bag-of-words model; two similar
techniques previously used in the domains of information retrieval [30] and text pro-
cessing [16, 17]. A document – in our case an analysis report – is characterized by fre-
quencies of contained strings. We refer to the set of considered strings as feature set
and denote the set of all possible reports by . Given a string s and a report x ,
we determine the number of occurrences of s in x and obtain the frequency f (x s).
The frequency of a string s acts as a measure of its importance in x, e.g., f (x s) 0
corresponds to no importance of s, while f (x s) 0 5 indicates dominance of s in x.
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We derive an embedding function which maps analysis reports to an -dimensional
vector space by considering the frequencies of all strings in :

: (x) ( f (x s))s

For example, if contains the strings and , two dimensions
in the resulting vector space correspond to the frequencies of these strings in analysis re-
ports. Computation of these high-dimensional vectors seems infeasible at a first glance,
as may contain arbitrary many strings, yet there exist e cient algorithms that exploit
the sparsity of this vector representation to achieve linear run-time complexity in the
number of input bytes [29, 32].

In contrast to textual documents we can not define a feature set a priori, simply
because not all important strings present in reports are known in advance. Instead, we
define implicitly by deriving string features from the observed malware operations.
Each monitored operation can be represented by a string containing its name and a list
of key-value pairs, e.g., a simplified string s for copying a file is given by

“ ”

Such representation yields a very specific feature set , so that slightly deviating be-
havior is reflected in di erent strings and vector space dimensions. Behavioral patterns
of malware, however, often express variability induced by obfuscation techniques, e.g.,
the destination for copying a file might be a random file name. To address this problem,
we represent each operation by multiple strings of di erent specificity. For each oper-
ation we obtain these strings by defining subsets of key-value pairs ranging from the
full to a coarse representation. E.g. the previous example for copying a file is associated
with three strings in the feature set

“ ”

“ ”

“ ”

“ ”

The resulting implicit feature set and the vector space induced by correspond
to various strings of possible operations, values and attributes, thus covering a wide
range of potential malware behavior. Note, that the embedding of analysis reports using
a feature set and function is generic, so that it can be easily adapted to di erent
report formats of malware analysis software.

3.4 Learning and Classification

The embedding function introduced in the previous section maps analysis reports
into a vector space in which various learning algorithms can be applied. We use the
well-established method of Support Vector Machines (SVM), which provides strong
generalization even in presence of noise in features and labels. Given data of two classes
an SVM determines an optimal hyperplane that separates points from both classes with
maximal margin [e.g. 7, 31, 35].
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The optimal hyperplane is represented by a vector w and a scalar b such that the inner
product of w with vectors (xi) of the two classes are separated by an interval between

1 and 1 subject to b:

w (xi) b 1 for xi in class 1,

w (xi) b 1 for xi in class 2.

The optimization problem to be solved for finding w and b can be solely formulated
in terms of inner products (xi) (x j) between data points. In practice these inner
products are computed by so called kernel functions, which lead to non-linear classifi-
cation surfaces. For example, the kernel function k for polynomials of degree d used in
our experiments is given by

k(xi x j) ( (xi) (x j) 1)d

Once trained, an SVM classifies a new report x by computing its distance h(x) from
the separating hyperplane as

h(x) w (x) b
n

i 1

iyik(xi x) b

where i are parameters obtained during training and yi labels ( 1 or 1) of training
data points. The distance h(x) can then be used for multi-class classification among
malware families in one of the following ways:

1. Maximum distance. A label is assigned to a new behavior report by choosing the
classifier with the highest positive score, reflecting the distance to the most discrim-
inative hyperplane.

2. Maximum probability estimate. Additional calibration of the outputs of SVM clas-
sifiers allows to interpret them as probability estimates. Under some mild proba-
bilistic assumptions, the conditional posterior probability of the class 1 can be
expressed as:

P(y 1 h(x))
1

1 exp(Ah(x) B)

where the parameters A and B are estimated by a logistic regression fit on an in-
dependent training data set [27]. Using these probability estimates, we choose the
malware family with the highest estimate as our classification result.

In the following experiments we will use the maximum distance approach for com-
bining the output of individual SVM classifiers. The probabilistic approach is applicable
to prediction as well as detection of novel malware behavior and will be considered in
Section 4.3.

3.5 Explanation of Classification

A security practitioner is not only interested in how accurate a learning system per-
forms, but also needs to understand how such performance is achieved – a requirement
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not satisfied by many “black-box” applications of machine learning. In this section we
supplement our proposed methodology and provide a procedure for explaining classifi-
cation results obtained using our method.

The discriminative model for classification of a malware family is the hyperplane
w in the vector space learned by an SVM. As the underlying feature set corre-
sponds to strings si reflecting observed malware operations, each dimension wi of
w expresses the contribution of an operation to the decision function h. Dimensions wi

with high values indicate strong discriminative influence, while dimensions with low
values express few impact on the decision function. By sorting the components wi of w
one obtains a feature ranking, such that wi wj implies higher relevance of si over s j.
The most prominent strings associated with the highest components of w can be used to
gain insights into the trained decision function and represent typical behavioral patterns
of the corresponding malware family.

Please note that an explicit representation of w is required for computing a feature
ranking, so that in the following we provide explanations of learned models only for
polynomial kernel functions of degree 1.

4 Experiments

We now proceed to evaluate the performance and e ectiveness of our methodology
in di erent setups. For all experiments we pursue the following experimental proce-
dure: The malware corpus of 10,072 samples introduced in Section 3.1 is randomly
split into three partitions, a training, validation and testing partition. For each partition
behavior-based reports are generated and transformed into a vectorial representation as
discussed in Section 3. The training partition is used to learn individual SVM classi-
fiers for each of the 14 malware families using di erent parameters for regularization
and kernel functions. The best classifier for each malware family is then selected us-
ing the classification accuracy obtained on the validation partition. Finally, the overall
performance is measured using the combined classifier on the testing partition.

This procedure, including randomly partitioning the malware corpus, is repeated over
five experimental runs and corresponding results are averaged. For experiments involv-
ing data not contained in the malware corpus (Section 4.2 and 4.3), the testing partition
is replaced with malware binaries from a di erent source. The machine learning toolbox
Shogun [33] has been chosen as an implementation of the SVM. The toolbox has been
designed for large-scale experiments and enables learning and classification of 1,700
samples per minute and malware family.

4.1 Classification of Malware Behavior

In the first experiment we examine the general classification performance of our mal-
ware behavior classifier. Testing data is taken from the malware corpus introduced in
Section 3.1. In Figure 2 the per-family accuracy and a confusion matrix for this exper-
iment is shown. The plot in Figure 2 (a) depicts the percentage of correctly assigned
labels for each of the 14 selected malware families. Error bars indicate the variance
measured during the experimental runs. The matrix in Figure 2 (b) illustrates confusions
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Fig. 2. Performance of malware behavior classifier using operation features on testing partition
of malware corpus. Results are averaged over five experimental runs.

made by the malware behavior classifier. The density of each cell gives the percentage
of a true malware family assigned to a predicted family by the classifier. The matrix
diagonal corresponds to correct classification assignments.

On average 88% of the provided testing binaries are correctly assigned to malware
families. In particular, the malware families Worm.Allaple (4), Worm.Doomber (5),
Worm.Gobot (6) and Worm.Sality (12) are identified almost perfectly. The precise clas-
sification of Worm.Allaple demonstrates the potential of our methodology, as this type
of malware is hard to detect using static methods: Allaple is polymorphically encrypted,
i.e., every copy of the worm is di erent from each other. This means that static analysis
can only rely on small parts of the malware samples, e.g., try to detect the decryptor.
However, when the binary is started, it goes through the polymorphic decryptor, un-
packs itself, and then proceeds to the static part of the code, which we observe with
our methodology. All samples express a set of shared behavioral patterns su cient for
classification using our behavior-based learning approach.

The accuracy for Backdoor.VanBot (1) and Worm.IRCBot (7) reaches around 60%
and expresses larger variance – an indication for a generic AV label characterizing mul-
tiple malware strains. In fact, the samples of Worm.IRCBot (7) in our corpus comprise
over 80 di erent mutex names, such as , or , giving evidence of
the heterogeneous labeling.

4.2 Prediction of Malware Families

In order to evaluate how good we can even predict malware families which are not de-
tected by anti-virus products, we extended our first experiment. As outlined in
Section 3.1, our malware corpus is generated by collecting malware samples with the
help of honeypots and spam-traps. The anti-virus engine Avira AntiVir, used to assign
labels to the 10,072 binaries in our malware corpus, failed to identify additional 8,082
collected malware binaries. At this point, however, we can not immediately assess the
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performance of our malware behavior classifier as the ground truth, the true malware
families of these 8,082 binaries, is unknown.

We resolve this problem by re-scanning the undetected binaries with the Avira An-
tiVir engine after a period of four weeks. The rationale behind this approach is that the
AV vendor had time to generate and add missing signatures for the malware binaries
and thus several previously undetected samples could be identified. From the total of
8,082 undetected binaries, we now obtain labels for 3,139 samples belonging to the 14
selected malware families. Table 2 lists the number of binaries for each of the 14 fam-
ilies. Samples for Worm.Doomber, Worm.Gobot and Worm.Sality were not present,
probably because these malware families did not evolve and current signatures were
su cient for accurate detection.

Based on the experimental procedure used in the first experiment, we replace the
original testing data with the embedded behavior-based reports of the new 3,139 labeled
samples and again perform five experimental runs.

Figure 3 provides the per-family accuracy and the confusion matrix achieved on
the 3,139 malware samples. The overall result of this experiment is twofold. On aver-
age, 69% of the malware behavior is classified correctly. Some malware, most notably
Worm.Allaple (4), is detected with high accuracy, while on the other hand malware

Table 2. Undetected malware families of 3,139 samples, labeled by Avira AntiVir four weeks
after learning phase. Numbers in brackets indicate occurrences of each Malware family.

1: Backdoor.VanBot (169) 8: Worm.Korgo (4)
2: Trojan.Bancos (208) 9: Worm.Parite (19)
3: Trojan.Banker (185) 10: Worm.PoeBot (188)
4: Worm.Allaple (614) 11: Worm.RBot (904)
5: Worm.Doomber (0) 12: Worm.Sality (0)
6: Worm.Gobot (0) 13: Worm.SdBot (597)
7: Worm.IRCBot (107) 14: Worm.Virut (144)
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Fig. 3. Performance of malware behavior classifier on undetected data using operation features.
Malware families 5, 6 and 12 are not present in the testing data.
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families such as Worm.IRCBot (7) and Worm.Virut (14) are poorly recognized. Still,
the performance of our malware behavior classifier is promising, provided that during
the learning phase none of these malware samples was detected by the Avira AntiVir
engine. Moreover, the fact that AV signatures present during learning did not su ce for
detecting these binaries might also indicate truly novel behavior of malware, which is
impossible to predict using behavioral patterns contained in our malware corpus.

4.3 Identification of Unknown Behavior

In the previous experiments we considered the performance of our malware behavior
classifier on 14 fixed malware families. In a general setting, however, a classifier might
also be exposed to malware binaries that do not belong to one of these 14 families. Even
if the majority of current malware families would be included in a large learning system,
future malware families could express activity not matching any patterns of previously
monitored behavior. Moreover, a malware behavior classifier might also be exposed to
benign binaries either by accident or in terms of a denial-of-service attack. Hence, it is
crucial for such a classifier to not only identify particular malware families with high
accuracy, but also to verify the confidence of its decision and report unknown behavior.

We extend our behavior classifier to identify and reject unknown behavior by chang-
ing the way individual SVM classifiers are combined. Instead of using the maximum
distance to determine the current family, we consider probability estimates for each
family as discussed in Section 3.4. Given a malware sample, we now require exactly
one SVM classifier to yield a probability estimate larger 50% and reject all other cases
as unknown behavior.

For evaluation of this extended behavior classifier we consider additional malware
families not part of our malware corpus and benign binaries randomly chosen from
several desktop workstations running Windows XP SP2. Table 3 provides an overview
of the additional malware families. We perform three experiments: first, we repeat the
experiment of Section 4.1 with the extended classifier capable of rejecting unknown
behavior, second we consider 530 samples of the unknown malware families given in
Table 3 and third we provide 498 benign binaries to the extended classifier.

Figure 4 shows results of the first two experiments averaged over five individual
runs. The confusion matrices in both sub-figures are extended by a column labeled
u which contains the percentage of predicted unknown behavior. Figure 4 (a) depicts
the confusion matrix for the extended behavior classifier on testing data used in Sec-
tion 4.1. In comparison to Section 4.1 the overall accuracy decreases from 88% to 76%,

Table 3. Malware families of 530 samples not contained in malware learning corpus. The num-
bers in brackets indicate occurrences of each malware family.

a: Worm.Spybot (63) f: Trojan.Proxy.Cimuz (73)
b: Worm.Sasser (23) g: Backdoor.Zapchast (25)
c: Worm.Padobot (62) h: Backdoor.Prorat (77)
d: Worm.Bagle (20) i: Backdoor.Hupigon (96)
e: Trojan.Proxy.Horst (29)
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Fig. 4. Performance of extended behavior classifier on (a) original testing data and (b) malware
families not contained in learning corpus. The column labeled “u” corresponds to malware bina-
ries classified as unknown behavior.

as some malware behavior is classified as unknown, e.g., for the generic AV labels of
Worm.IRCBot (7). Yet this increase in false-positives coincides with decreasing con-
fusions among malware families, so that the confusion matrix in Figure 4 (a) yields
fewer o -diagonal elements in comparison to Figure 2 (b). Hence, the result of using
a probabilistic combination of SVM classifiers is twofold: on the one hand behavior of
some malware samples is indicated as unknown, while on the other hand the amount of
confusions is reduced leading to classification results supported by strong confidence.

Figure 4 (b) now provides the confusion matrix for the unknown malware fami-
lies given in Table 3. For several of these families no confusion occurs at all, e.g., for
Worm.Bagle (d), Trojan.Proxy.Horst (e) and Trojan.Proxy.Cimuz (f). The malware be-
havior classifier precisely recognizes that these binaries do not belong to one of the 14
malware families used in our previous experiments. The other tested unknown malware
families show little confusion with one of the learned families, yet the majority of these
confusions can be explained and emphasizes the capability of our methodology to not
discriminate AV labels of malware but its behavior.

– Worm.Spybot (a) is similar to other IRC-bots in that it uses IRC as command in-
frastructure. Moreover, it exploits vulnerabilities in network services and creates
auto-start keys to enable automatic start-up after system reboot. This behavior leads
to confusion with Worm.IRCBot (7) and Worm.RBot (11), which behave in exactly
the same way.

– Worm.Padobot (c) is a synonym for Worm.Korgo (8): several AV engines name
this malware family Worm.Padobot, whereas others denote it by Worm.Korgo. The
corresponding confusion in Figure 4 (b) thus results from the ability of our learning
method to generalize beyond the restricted set of provided labels.

– Backdoor.Zapchast (g) is a network backdoor controlled via IRC. Some binaries con-
tained in variants of this malware are infected with Worm.Parite (9). This coupling
of two di erent malware families, whether intentional by the malware author or ac-
cidental, is precisely reflected in a small amount of confusion shown in Figure 4 (b).
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Fig. 5. Discriminative operation features extracted from the SVM classifier of the the malware
family Sality. The numbers to the left are the sorted components of the hyperplane vector w.

In the third experiment focusing on benign binaries, all reports of benign behavior
are correctly assigned to the unknown class and rejected by the extended classifier. This
result shows that the proposed learning method captures typical behavioral patterns
of malware, which leads to few confusions with other malware families but enables
accurate discrimination of normal program behavior if provided as input to a classifier.

4.4 Explaining Malware Behavior Classification

The experiments in the previous sections demonstrate the ability of machine learning
techniques to e ectively discriminate malware behavior. In this section we examine
the discriminative models learned by the SVM classifiers and show that relations of
malware beyond the provided AV labels can be deduced from the learned classifiers. For
each of the 14 considered malware families we learn an SVM classifier, such that there
exist 14 hyperplanes separating the behavior of one malware family from all others. We
present the learned decision functions for the Sality and Doomber classifiers as outlined
in Section 3.5 by considering the most prominent patterns in their weight vectors.

Sality Classifier. Figure 5 depicts the top five discriminating operation features for
the family Worm.Sality learned by our classifier. Based on this example, we see that
operation features can be used by a human analyst to understand the actual behavior
of the malware family, e.g., the first two features show that Sality creates a file within
the Windows system directory. Since both variants created during the preprocessing
step (see Section 3.3 for details) are included, this indicates that Sality commonly uses
the source filename . Moreover, this malware family also deletes at least
one file within the Windows system directory. Furthermore, this family creates a mutex
containing the string (e.g., as shown in Figure 5 and

as sixth most significant feature) such that only one instance of the
binary is executed at a time. Last, Sality commonly enumerates the running processes.

Based on these operation features, we get an overview of what specific behavior
is characteristic for a given malware family; we can understand what the behavioral
patterns for one family are and how a learned classifier operates.

Doomber Classifier. In Figure 6, we depict the top five discriminating operation fea-
tures for Worm.Doomber. Di erent features are significant for Doomber compared to
Sality: the three most significant components for this family are similar mutex names,
indicating di erent versions contained in our malware corpus. Furthermore, we can see
that Doomber enumerates the running processes and queries certain registry keys.
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Fig. 6. Discriminative operation features extracted from the SVM classifier of the the malware
family Doomber. The numbers to the left are the sorted components of the hyperplane vector w.

In addition, we make another interesting observation: our learning-based system
identified the mutex names , and to be among
the top five operation features for Worm.Gobot. The increased version number reveals
that Gobot and Doomber are closely related. Furthermore, our system identified several
characteristic, additional features contained in reports from both malware families, e.g.,
registry keys accessed and modified by both of them. We manually verified that both
families are closely related and that Doomber is indeed an enhanced version of Gobot.
This illustrates that our system may also help to identify relations between di erent
malware families based on observed run-time behavior.

5 Limitations

In this section, we examine the limitations of our learning and classification methodol-
ogy. In particular, we discuss the drawbacks of our analysis setup and examine evasion
techniques that could be used by an attacker.

One drawback of our current approach is that we rely on one single program ex-
ecution of a malware binary: we start the binary within the sandbox environment and
observe one execution path of the sample, which is stopped either if a timeout is reached
or if the malware exits from the run by itself. We thus do not get a full overview of what
the binary intends to do, e.g., we could miss certain actions that are only executed on
a particular date. However, this deficit can be addressed using a technique called multi-
path execution, recently introduced by Moser et al. [24], which essentially tracks input
to a running binary and selects a feasible subset of possible execution paths. Moreover,
our results indicate that a single program execution often contains enough information
for accurate classification of malware behavior, as malware commonly tries to aggres-
sively propagate further or quickly contacts a Command & Control servers.

Another drawback of our methodology is potential evasion by a malware, either by
detecting the existence of a sandbox environment or via mimicry of di erent behavior.
However, detecting of the analysis environment is no general limitation of our approach:
to mitigate this risk, we can easily substitute our analysis platform with a more resilient
platform or even use several di erent analysis platforms to generate the behavior-based
report. Second, a malware binary might try to mimic the behavior of a di erent malware
family or even benign binaries, e.g. using methods proposed in [13, 38]. The considered
analysis reports, however, di er from sequential representations such as system call
traces in that multiple occurrences of identical activities are discarded. Thus, mimicry
attacks can not arbitrarily blend the frequencies or order of operation features, so that
only very little activity may be covered in a single mimicry attack.
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A further weakness of the proposed supervised classification approach is its inability
to find structure in new malware families not present in a training corpus. The presence
of unknown malware families can be detected by the rejection mechanism used in our
classifiers, yet no further distinction among rejected instances is possible. Whether this
is a serious disadvantage in comparison to clustering methods is to be seen in practice.

6 Conclusions

The main contribution of this paper is a learning-based approach to automatic classi-
fication of malware behavior. The key ideas of our approach are: (a) the incorporation
of labels assigned by anti-virus software to define classes for building discriminative
models; (b) the use of string features describing specific behavioral patterns of malware;
(c) automatic construction of discriminative models using learning algorithms and (d)
identification of explanatory features of learned models by ranking behavioral patterns
according to their weights. To apply our method in practice, it su ces to collect a large
number of malware samples, analyze its behavior using a sandbox environment, iden-
tify typical malware families to be classified by running a standard anti-virus software
and construct a malware behavior classifier by learning single-family models using a
machine learning toolbox.

As a proof of concept, we have evaluated our method by analyzing a training cor-
pus collected from honeypots and spam-traps. The set of known families consisted
of 14 common malware families; 9 additional families were used to test the ability
of our method to identify behavior of unknown families. In an experiment with over
3,000 previously undetected malware binaries, our system correctly predicted almost
70% of labels assigned by an anti-virus scanner four weeks later. Our method also de-
tects unknown behavior, so that malware families not present in the learning corpus
are correctly identified as unknown. The analysis of prominent features inferred by our
discriminative models has shown interesting similarities between malware families; in
particular, we have discovered that Doomber and Gobot worms derive from the same
origin, with Doomber being an extension of Gobot.

Despite certain limitations of our current method, such as single-path execution in
a sandbox and the use of imperfect labels from an anti-virus software, the proposed
learning-based approach o ers the possibility for accurate automatic analysis of mal-
ware behavior, which should help developers of anti-malware software to keep apace
with the rapid evolution of malware.
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Abstract. A web programmer often conceives its application as a se-
quential entity, thus neglecting the parallel nature of the underlying exe-
cution environment. In this environment, multiple instances of the same
sequential code can be concurrently executed. From such unexpected par-
allel execution of intended sequential code, some unforeseen interactions
could arise that may alter the original semantic of the application as it
was intended by the programmer. Such interactions are usually known
as race conditions.

In this paper, we discuss the impact of race condition vulnerabilities on
web-based applications. In particular, we focus on those race conditions
that could arise because of the interaction between a web application and
an underlying relational database. We introduce a dynamic detection
method that, during our experiments, led to the identification of several
race condition vulnerabilities even in mature open-source projects.

1 Introduction

The overwhelming majority of new computer applications are now developed
adopting the web paradigm. Communications relies on the HTTP protocol, and
the computation is performed via a client-server model, where client and server
are respectively represented by a web browser and a web server, appropriately
augmented by extension modules which enable the execution of server-side code.
The applications which satisfy these requirements are generally called “web ap-
plications”.

Originally, these applications were implemented using simple mechanisms to
create dynamic web pages. One of these technologies is the Common Gateway
Interface (CGI) [1], intended to provide web-based access to legacy applications
by acting like a gateway between the web server and the underlying legacy ap-
plication. Today, however, the most popular approach is based on extended web
servers, that provide modules that implement frameworks more suitable for the
development of web-based applications. Basically, the web server is able to in-
stantiate the virtual machine needed to interpret web application programs, that
are typically written in a dynamic-typed scripting language, such as PHP, Perl,
Python or Ruby. Typically, web applications rely on a three-tiers architecture
(web browser/web server/database manager). A very popular platform is the
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so called LAMP solution stack [2]: a Linux machine runs an Apache web server
which is able to control a MySQL database management system through a PHP
script.

Web applications have been reported to be subject to different kinds of at-
tacks, many of which are specific of the web environment [3]. Such vulnerabilities
could lead to the compromise or disclosure of sensitive information. According
to a recent analysis [4], more than 60% of the software vulnerabilities annually
reported are specific to web applications. This is mostly due to the fact that
it is often quite easy to create simple web applications, thus many of them are
written by developers with low programming or security skills. Nevertheless, web
applications are valuable targets for attackers, because they often interface with
a back-end server that handles sensitive information as credit card numbers,
e-mail addresses, financial records, etc.

The most recurrent flaws in web-based programs arise from the interaction
between the application and the underlying relational database used as a long-
term storage medium [5], while others depend on the incorrect handling of trust
relations between clients and servers [6]. All these types of vulnerabilities can be
ascribed to the lack of proper input validation: some parameters that are under
the direct control of a client are not properly validated.

In this paper we will introduce and discuss a new form of vulnerability which
affects web applications. Such a vulnerability emerged by observing the behav-
ior of some web applications when forced to be executed concurrently, and it
turned out that they suffer the typical race conditions symptoms. Although race
conditions are a well understood problem, in this work we will show that the
impact of such an issue on web applications is still largely unexplored. More
precisely, most of the web applications are made of many different scripts, each
performing simple and well-defined tasks, easily described by sequential code.
However, it is often neglected that any time a user requires the execution of
a server side script, such a script becomes the body of a new thread that is
executed in a multi-threaded environment. This could lead to more application
scripts instances being concurrently executed. If scripts are conceived as sequen-
tial code and if they use some shared resources (e.g., a database), the parallel
execution of these multiple instances could provoke races. For example, by ex-
ploiting such concurrency problems, in our experiments we have been able to by-
pass brute forcing protections, exploit SMS gateways, circumvent anti-flooding
mechanisms and we managed to submit multiple votes on polls where each user
was constrained to vote just one time.

We further deep our analysis in order to identify detection strategies for race
conditions in web applications. In particular, we are interested in the detection
of those race conditions that could arise because of the interaction between a
web-based application and an underlying relational database. The problem of
detecting and mitigating race conditions has been extensively discussed in liter-
ature, but the literature is entirely focused on applications expressly written as
concurrent. The problem we face in this paper is very different as it is related
to detecting synchronization problems in sequential code which can be executed
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concurrently. In other words, the problem is not, as usual, to analyze the correct-
ness of a programmed synchronization policy, but to detect whether the implicit
interprocess communication contained in a piece of sequential code could lead to
security failures, when multiple instances of the code are executed concurrently.

We can summarize the key contributions of this paper as follows:

– we shed light on the impact of race conditions on web-based applications.
Race conditions are a well-known problem, but the effects of those on web-
based programs have not been underlined, so far.

– We propose a novel technique for the detection of race conditions that arise
from the interactions between a web application and an underlying database.
Our proposed method has been implemented in a prototype that led to
the detection of several previously unknown vulnerabilities in mature open-
source applications.

– We discuss possible countermeasures to hamper exploitation attempts.

This paper is structured as follows. In Section 2 we discuss the implications of
race conditions on web-based programs and the impact of this kind of synchro-
nization issues on real-world applications. Section 3 introduces our detection
method together with some implementation details and experimental results.
Possible countermeasures are analyzed during Section 4, while in Section 5 we
discuss related work. Finally, Section 6 briefly concludes our paper.

2 Race Conditions in Web Applications

A race condition occurs when different parallel processes access shared data with-
out proper synchronization [7]. Races are difficult to spot because the human
mind is not good at extensively analyze the exceedingly high number of interleav-
ings allowed by the operating system scheduler. Thus, concurrency is a typical
source of vulnerabilities [8,9,10], and one of the oldest security problems [11].
Here we will show that the same phenomenon occurs in web applications.

Often web applications are conceived as a set of scripts that query and update
an underlying database. In these situations, a programmer does not usually care
about concurrency issues, and considers his scripts as executed by the web server
in a strictly sequential order. So, he typically ignores the intrinsic architecture
of the underlying web server, which enables multithreaded executions of code.
Moreover, it is often neglected that the underlying DBMS represents a shared
resource that can be concurrently accessed by multiple script instances. As we
will show, by exploiting these facts, a malicious user could induce an application
to behave differently from what the programmer meant.

As an example, consider the PHP script fragment depicted in Figure 1. In this
example, the programmer wanted to implement an e-banking money transfer
procedure: the user tries to withdraw an amount of money; the system checks
if the user has that amount on his account (lines 1–4) and, if so, it authorizes
the execution of the requested operation (line 5). Finally, the system updates
the user’s account by withdrawing the aforementioned amount (lines 6–7). Now
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1 $res = mysql query(”SELECT credit FROM Users WHERE id=$id”);
2
3 $row = mysql fetch assoc($res);
4 if($row[’credit’] >= $ POST[’amount’]) {
5 〈execute the requested operation〉
6 $new credit = $row[’credit’] − $ POST[’amount’];
7 $res = mysql query(”UPDATE Users SET credit=$new credit WHERE id=$id”);
8 }

Fig. 1. An example of a vulnerable PHP script fragment

suppose that a script instance P executes the statement at line 3, thus retrieving
from the database a tuple t of the Users relation. The procedure in Figure 1
would be prone to races if another script instance could obtain read or write
access to t before P fully executes the query at line 7. In fact, it can be easily
verified that the parallel execution of multiple instances of this script fragment
on the same server could result in a violation of the precondition of line 4.

Some solutions to this classical test & set problem may be available, how-
ever here the main issue is that a typical programmer does not conceive his web
application as a multi-threaded or multi-process entity.

In this paper we will focus on the detection of race condition vulnerabilities
in PHP applications. However, our results are not language-dependent, and can
easily be extended to other platforms, such as Perl, Python, and so on. More-
over, we also limit our analysis to the race conditions that could arise from the
interactions between a web application and an underlying DBMS. It is worth
noting that race conditions could derive from unmanaged access to any shared
resource: a database is only an example of such a resource, even if probably the
most common one.

Although not every race condition has necessarily security-relevant conse-
quences, in our experiments we have been able to found a significant number of
concurrency issues, so the overall probability of the security relevance of at least
one of these defects is still significantly high.

We would also stress that the solution to these kind of problems cannot be
delegated entirely to the DBMS implementors. Usually, even simple DBMSs
do provide proper synchronization features that allow programmers to handle
concurrency problems (e.g., locking statements, ACID transactions, . . . ) and
they actually guarantee the atomic execution of each submitted query (or each
submitted transaction). However, DBMSs cannot automatically recognize when
a sequence of queries should be executed atomically, because this heavily depends
on the application’s logic. Thus, is up to programmers to properly use database-
level synchronization primitives in order to avoid concurrency problems in their
applications.

2.1 Case Studies

In order to verify the impact of race condition vulnerabilities on real-world web-
based applications, we tried to exploit two remote closed-source commercial
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systems, having only access to their external interfaces. The first application
is managed by an Internet service provider, while the second one belongs to a
telecommunication provider. For obvious reasons, the names of the corporates
involved will not be disclosed. Both applications are designed to permit users to
send SMS messages through a web interface, allowing only a limited number of
SMS per user, per day. For both applications, our conjecture was that, when an
authenticated user tries to send a message, the application checks his account
information from the database. We imagined that the program first sent the
message and finally updated the user’s account. This behavior is very similar
to the bank example reported in Figure 1. Then, we tried to exploit the remote
applications. In the first case, we sent 11 parallel SMS requests. The remote ser-
vice was supposed to accept only 10 requests, but we received 11 SMS messages
on our mobile phone. In the second case, we sent 10 parallel requests. The appli-
cation was supposed to discard all but one request, so we were quite surprised
when we received all the 10 SMS messages.

This simple experiment leads us to believe that a consistent number of com-
mercial (and maybe critical) real-world applications are vulnerable to similar
attacks.

We have also tested mature open-source applications (e.g., phpBB3 [12] and
Joomla! [13]): not even a single application from those we analyzed was found
to be free from concurrency problems. Even if many of these defects cannot lead
to compromise the application’s logic, some of them can actually allow a mali-
cious user to violate the security properties of the web-based application. Never-
theless, exploiting race condition-based vulnerabilities requires some knowledge
about the application’s logic and thus their exploitation is surely more difficult
with respect to other categories of web vulnerabilities, such as cross site script-
ing [6] or SQL injection [5]. Despite these issues, we have been able to alter the
original semantics of every real-world application we have analyzed during our
experiments.

3 Detecting Race Conditions in LAMP-Like Web
Applications

In this section, we propose a method based on dynamic analysis for the detection
of race conditions in LAMP-like web applications. The idea is to build a system
which supports a programmer during the development of a web application,
and which is able to automatically locate suspicious query sequences. Such an
approach has been implemented in an experimental prototype.

We focused on those race conditions that arise from the interactions between
an application and the underlying SQL-enabled relational database. Moreover,
we are interested in the detection of those issues that could result from the ex-
ecution of multiple instances of the same web application script. We leave the
detection of inter-module race conditions for future work.
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Our detection strategy is formed by the following components:

1. a SQL-query logger, which monitors a concrete execution of the web appli-
cation to be analyzed and logs each query that the application submits to
the DBMS;

2. an off-line analyzer, which examines the log files that have been produced
by the SQL-query logger and detects the potential dangerous queries. Such
a component is realized by two modules: the first one searches the log files
for query interdependencies that could be considered as a symptom of the
presence of a race condition; the second module refines the results obtained
so far, by removing query pairs that are guaranteed to be race-free.

3.1 SQL-Query Logger

There are many different methods that can be employed in order to log database
queries: we could for example intercept them at the DBMS level, or we could
modify the module used by the application interpreter to interact with the under-
lying database; alternatively, we could intercept SQL queries at the application
level, by hooking database-related functions. As we discuss in more detail in a
following section, our current prototype implements the latter approach. Thus,
at runtime, each time the application invokes a database-related function to
submit a SQL statement to the DBMS, our logger module intercepts the query
string. Then, each query that has been intercepted is recorded into a text file for
the subsequent off-line analysis.

3.2 Off-Line Analyzer: Basic Approach

Once database queries have been collected, the resulting log files are examined
by our query analyzer. The idea behind our method is to exploit query inter-
dependencies so that likely race conditions can be detected. More precisely, let
q = {s1, s2, . . . , sn} be a query, where si denotes the schema objects (attributes
or relations) referred to by q. We consider a schema object to be used by a query
when its value is read. An attribute is defined by a query when it is altered by
the execution of such a statement. Instead, we consider a relation to be defined
by a query if it modifies the total number of tuples in that relation. As an ex-
ample, a DELETE statement defines the relation that appears in its FROM
clause, while it uses every schema object that appears in its WHERE clause.

Given a query q, we define use(q) and def(q) as the sets of schema objects
that are respectively used and defined by q. Thus, we can formalize the notion
of interdependence with the following definition:

Definition 1. Let (p, q) be a pair of SQL queries. Then, (p, q) are said to be
interdependent if use(p) ∩ def(q) �= ∅.
Our observation is that interdependent queries could give rise to race conditions.
Thus, our detection strategy consists in determining a set containing every pair
of interdependent queries.
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Input: Q = {qi, i = 1, 2, . . . , n}, a list of SQL queries.
Output: R = {(p, q), p ∈ Q ∧ q ∈ Q}, a list of paired SQL queries that suggest

possible race conditions.

R = ∅
for i = 1, 2, . . . , n do

q = Q[i]
D = def(q)
for j = i − 1, i − 2, . . . , 1 do

p = Q[j]
U = use(p)
if D ∩ U �= ∅ then

R = R ∪ {(p, q)}

Fig. 2. Pseudo-code for a simplified version of the detection algorithm

SELECT user id
FROM Sessions
WHERE expiry time >= 1195745465;

DELETE FROM Sessions
WHERE expiry time < 1195745465;

Fig. 3. An example of two conflicting SQL queries with disjoint WHERE clauses

Definition 2. Let Q = {q1, q2, . . . , qn} be a set of SQL queries. We define a
total ordering relation < on its elements, such that ∀qi, qj ∈ Q, qi < qj if and
only if i < j, i.e., qi appears before qj in the query log.

Definition 3. The set R of interdependent query pairs is defined as:

R = {(qi, qj) ∈ Q × Q | (qi < qj) ∧ (use(qi) ∩ def(qj) �= ∅)}.

The algorithm reported in Figure 2 formalizes these notions. The algorithm
receives as input a list of SQL statements, gathered dynamically by the query
logger and outputs a set of interdependent SQL query pairs (p, q). From each of
these SQL query pairs, a race condition could arise.

3.3 Off-Line Analyzer: Further Heuristics

Some of the query pairs collected with the approach sketched above may repre-
sent false positives. Thus, we developed a further module to remove those pairs
that are guaranteed to be race-free. Such a module is based on the following
heuristics.

WHERE clauses. A significant source of false positives are interdependent
queries whose relative WHERE clauses always identify disjoint sets of rows. As
an example, consider the SQL queries reported in Figure 3: here the application
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extracts from the Sessions relation the user IDs not yet expired; afterwards,
the application removes stale sessions from the database. Apparently, a race is
possible between the two queries, because the first one uses the Sessions relation
(as well as the user id attribute) while the second statement defines it. This is
however a false positive, because the intersection of the sets of rows selected by
the two statements always corresponds to the empty set. To address this problem
we need a method that allow us to assert when two WHERE clauses identify
disjoint sets of rows. In such a situation, no race condition could occur between
the two queries, even if they are interdependent. In the following discussion,
we assume that two queries q1, q2 share the same FROM clause f but have
(possibly) different WHERE clauses w1, w2.

A viable approach is to exploit the possibility of dynamically querying the
DBMS. Every time we need to assert the disjunction between the sets of rows
identified by w1 and w2 we can build the statement:

SELECT ∗ FROM fWHERE w1AND w2

If the set of rows returned by such a statement is not empty, then we can assert
that there can be a race between queries q1 and q2. It is worth noting that
if an empty set is returned, then we can only state that no race can occur in
the current database instance (i.e. tuples currently contained in each database
relation), but we cannot be sure that no race could ever happen.

An alternative approach consists of employing a decision procedure to assert if
the sets of rows identified by w1 and w2 are actually disjoint. Such a method has
the obvious advantage to be able to reason about any possible database instance,
and not only about the current one, thus overcoming the major drawback of the
previous approach. However, such a method would also introduce a significant
overhead due to the use of an external constraint solver. Moreover, it is impor-
tant to note that the constraint solver would probably not be able to handle
some particular SQL constructs, such as LIKE expressions or nested queries.
In these situations, the constraint solver would have to behave conservatively,
thus reporting that the analyzed queries are not guaranteed to be independent.
Nevertheless, in many practical situations this method is still effective.

Note that the constraint solver-based approach and the dynamic query ap-
proach are complementary rather than alternative: these two methods can be
employed together in order to combine the efficiency of direct DBMS queries with
the conservativism of the constraint solver. Every time a race condition is de-
tected, the DBMS can be dynamically queried in order to verify if, in the current
database instance, the sets of rows selected by the two WHERE clauses are not
disjoint. If these sets of rows turn out to be disjoint in the current database in-
stance, then we can fall back to the less efficient constraint solver-based method,
in order to obtain a sound answer.

Attribute-relation bindings. Another significant source of false positives is
due to the fact that we cannot always accurately deduce the relation an attribute
belongs to, by only observing a single SQL query statement. Consider the query
SELECT a1, a2FROM T1, T2. The a1 attribute could belong either to the T1
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#! TAG get all ids
SELECT user id
FROM Users;

#! SAFE get all ids
DELETE FROM Users
WHERE user id = 10;

Fig. 4. An example of SQL queries annotated for suppressing race reports

relation or to the T2 relation. The only thing we can do is to conservatively
assume that each attribute could belong to any relation used by the analyzed
query. Clearly, this could introduce a number of false positives during race de-
tection. To overcome this limitation, in these cases we allow our race detector to
actively query the application database to determine to which relation attributes
belong. In the above SELECT statement, our race detector would actively query
the underlying DBMS to determine the attributes of the T1 and T2 relations, in
order to discover which one contains a1 or a2.

Annotations. Finally, it is worth pointing out that the algorithm presented
above does not take into account any explicit synchronization attempt. We dis-
cuss this particular design choice during Section 3.5. The main consequence of
such a limitation is that our detector will report a race condition even when a so-
lution has been coded around it. Of course, such a behavior would seriously limit
the employment of our proposed detection method in the development cycle of
real-world applications. The accurate detection of every possible synchronization
attempt, without relying on the knowledge of the particular set of synchroniza-
tion primitives being used, is a complex task. In particular, in our situation this
task becomes completely not feasible because we are only observing the inter-
actions between the application and the database, without taking into account
any information that could be extracted from the web application’s code. For
these reasons, we allow the programmer to explicitly specify that the race con-
dition between a pair of SQL queries has already been fixed and should not be
reported anymore by including appropriate annotations into those queries. Ev-
ery annotation starts with the "#!" prefix. The ‘#’ character indicates that the
current line contains a comment1, so that our annotations will not be processed
by the underlying DBMS. The ‘!’ character allows our race detector to discern
annotations from normal comments. We support two different annotation types:

TAG <name> an annotation of this type allows the programmer to unambigu-
ously define a name for a particular SQL query;

SAFE <name> this annotation type specifies that a race condition between this
query and the query with name <name> should not be reported.

1 This is true for MySQL. Should this assumption not be true, it is only a matter of
changing the comment character being used.
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As an example, consider the queries reported in Figure 4. The programmer has
assigned to the SELECT statement the name get all ids by using the annotation
TAG. Then, the report of every race condition that could occur between the
first query and the second one has been suppressed with a SAFE annotation.
With such annotations, a programmer can easily test his web application with
our detector module plugged in, fix the race conditions that are detected and
then annotate the concerning queries so that the same races will not be reported
again.

3.4 Implementation

We have implemented our detection method in a prototype that handles PHP
applications and assumes the MySQL DBMS as their back-end.

The implementation of the query logger module consists of a PHP wrapper
procedure around the mysql query() function, so the only preliminary opera-
tion required to analyze a web application consists in replacing every call to
mysql query() with a call to our mysql query wrapper() function. Many web
applications include a class that provides methods for submitting queries to the
underlying database, so abstracting the caller from the particular DBMS being
used. Thus, in order to integrate the query logger module, only a very limited
number of these methods needs to be modified. Notice that even this opera-
tion is made completely automatic by a simple script. Our wrapper function
logs into a text file every query that has been submitted to the DBMS together
with some meta-information, such as the name of the script that issued that
query and a dump of the interpreter’s call stack. When a race is detected, such
meta-information could help the programmer to easily locate the problem.

After the queries generated by a web application have been logged, the log files
are sent to our query analyzer module in order to spot possible race conditions.
Our query analyzer module consists in roughly 2000 lines of Python code and it
implements the detection model discussed in Section 3.2. Our current prototype
only lacks of the constraint solver-based method for determining if the sets of
rows identified by two database queries are guaranteed to be disjoint. For parsing
MySQL statements, the query analyzer leverages the DBIx::MyParsePP PERL
module.

3.5 Discussion

The proposed detection algorithm has still some limitations, that can be sum-
marized in the following points:

– our approach is completely dynamic, so it can only reason about a specific
execution path, i.e., the one that has been covered during the observed exe-
cution.

– We have no information about the application’s semantics other than the
query statements submitted to the DBMS. For example, we do not take
into account how data retrieved from the database is manipulated by the
application.
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– Our detection algorithm does not take into account any synchronization
method that the application could adopt in order to avoid concurrency prob-
lems.

The first limitation could only be overcomed with the application of static
or hybrid analysis techniques over the program’s source code: by using static or
hybrid methods we would be able to reason about the whole application rather
than a single execution path. Unfortunately, the application of static program
analysis methods to an interpreted, object-oriented and dynamic-typed scripting
language like PHP is far than easy and it would require to deal with very hard
problems, as mentioned in [14]. For example, the analysis of PHP applications
requires to perform points-to and alias analyses, that are, in general, undecidable
problems [15]. The use of program analysis techniques would also allow us to
obtain more information about an application’s semantics, thus overcoming our
second limitation. We leave such improvements for future work.

The last limitation of our detection algorithm concerns the lack of support for
synchronization primitives. Rather than a real limitation, this is an explicit de-
sign choice. First, at the application level, to the best of our knowledge, PHP does
not provide portable synchronization primitives that are suitable for our needs.
For example, PHP supports the flock() function that implements a portable file
locking mechanism, that can be used for synchronization and mutual exclusion
purposes. However, as stated in the PHP manual [16], on some operating systems
flock() is implemented at the process level, and, on multi-threaded web servers
such as Apache, multiple PHP requests can be executed as multiple threads of
the same process, so making flock() completely ineffective. Moreover, flock()

blocks the caller until the file lock is released unless the LOCK NB flag is speci-
fied. However, this option is not currently supported on Windows systems. PHP
does provide wrappers for the System V IPC functions, but this feature is not
enabled by default and is not available at all on Windows platforms. Second, at
the database level, the available synchronization primitives are highly DBMS-
dependent and often too coarse grained. As an example, MySQL, probably the
most widely used open source database, supports LOCK and UNLOCK state-
ments that provide a relation-level locking mechanism. However, such a granular-
ity is often too coarse to be adopted in heavy-loaded web applications. MySQL
also supports ACID transactions with row-level locking, but this feature is not
available when using MyISAM, the default storage engine. A more suitable mech-
anism is the GET LOCK() function[17]: it can be used to simulate record locks
by creating named locks. If a name has been locked by one client, GET LOCK()

blocks any request by another client for a lock with the same name. This allows
clients that agree on a given lock name to use the name to perform cooperative
advisory locking. Locks maybe released by calling RELEASE LOCK().

While there are suitable solutions, these can be used only by programmers
that are conscious of the concurrency issue and they require them to code explic-
itly a synchronization policy. Moreover, the penalty due to the use of synchro-
nization constructs is not always acceptable, because it could drastically reduce
the performances of the web application. Thus, we found that synchronization
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Table 1. Evaluation of the detection method. FP: False Positives; TP: True Positives
(security relevant true positives are reported in brackets). Note that these results have
been obtained without using the annotations supported by our system.

Application Category Queries Time FP TP
Joomla! 1.5RC4 CMS 4086 90.92 s 0 55 (2)

phpBB 3.0.0 forum 2236 43.09 s 0 35 (4)

WordPress 2.3.2 blog/CMS 3638 47.04 s 0 47 (4)

Zen Cart 1.3.8a shopping cart 35194 1622.39 s 0 46 (1)

primitives are rarely used in web applications and in our experiments the lack
of support for them has not raised the false positive rate. Moreover, the few
synchronization attempts we found at the PHP level, have actually been made
completely ineffective by the underlying storage engine.

3.6 Evaluation

To prove the effectiveness of our approach in detecting vulnerabilities, we ran our
prototype tool on some real word open-source web applications. Of course, the
main problem in evaluating our prototype (as with any other dynamic analysis
tool) concerns gathering relevant execution traces: the ability of our approach to
detect previously unknown race conditions heavily depends on the path coverage
rate obtained during the query logging phase. In our experiments, we tried to
stimulate the web applications being analyzed as if it was used by a typical user.
For example, with forum applications we tried to login by supplying both correct
and wrong credentials, we added new users, read some topics, created new topics
and polls, sent instant messages to other users, and so on.

We ran our detector on a Linux machine with a dual-core 2.0 GHz Pentium
processor and 1GB RAM. In Table 1 we summarize some of the results we
obtained during our experiments. The time required to analyze the application’s
log file of queries is very large, but more than 95% of the whole execution time
is spent while parsing SQL statements. Such an overhead is primarily due to the
inter-process interactions between our Python detector and the external Perl
SQL parser. The runtime overhead for logging SQL queries is negligible and not
reported in Table 1. As we already discussed during previous sections, not every
race condition we found was actually security relevant. However, we believe the
number of security relevant races we found together with the absence of false
positives prove the effectiveness of our detection method.

We can briefly summarize some of the vulnerabilities we run into in the fol-
lowing categories:

multiple users. Almost every application we analyzed was found to be
vulnerable to a race condition on user uniqueness: a malicious user could
register multiple accounts with the same username, thus bypassing applica-
tion’s checks. Of course, the security impact of this vulnerability is highly
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application-dependent. As an example, it could allow an attacker to take
advantage multiple times of a one-time bonus granted by a unique token.

brute forcing. Some applications (e.g., phpBB3), in order to prevent brute
forcing attacks, check if the user that is trying to log in has already per-
formed too many login attempts. The procedure used to perform this opera-
tion contains a race condition vulnerability that could allow a malicious user
to bypass the application’s attempts to limit brute forcing password attacks.
Depending on the application’s logic, such a vulnerability could allow an
attacker to perform just a limited number of additional attempts (e.g., when
the application ensures that tries ≤ MAX TRIES), or to completely circum-
vent application’s checks (e.g., when a brute force attack is reported only if
tries = MAX TRIES).

multiple poll votes. Web forums and CMSs often implement polls. The appli-
cations try to assure that each user does not submit multiple votes to the
same poll, but every program was found to be subject to a race that allows
a user to vote multiple times by submitting parallel vote requests.

topic flooding. phpBB3 and WordPress include an anti-flooding feature that
forces a user that has just submitted a message to wait a couple of seconds
before writing another post. Unfortunately, even this control can be easily
circumvented by an attacker because of a synchronization issue.

It is worth noting that in the web applications we analyzed we have met
very few synchronization attempts. Unfortunately, even in these cases we have
been able to find concurrency problems. This confirms that programmers are
not aware of the actual impact of race conditions on web-based applications.

4 Countermeasures

Before concluding our paper, in this section we introduce some countermeasures
a programmer could employ in order to hamper exploitation attempts.

Probably, the most obvious solution is to completely prevent any concurrency
issue by forcing the web server to serve just one client request at a time. Unfor-
tunately, such an approach is typically too drastic and not applicable at all, as
it seriously limits the overall efficiency of the whole web-based application.

Another approach consists in employing some application-level or database-
level synchronization primitives in order to explicitly serialize the accesses to an
application’s critical regions. As we already discussed, many of these primitives
often hide some subtle platform-specific details that a programmer should ac-
curately consider before deploying his web-based application; otherwise just the
migration of the application towards a different server could alter his behavior
and introduce new vulnerabilities. During Section 3.5 we pointed out the lim-
itations of PHP/MySQL environments. Obviously, different frameworks could
surely offer more efficient and fine-grained locking statements (e.g., row-level
database relation locking), but this typically comes at the cost of less efficiency
or more resource-consumption.
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For example, a table-level locking solution will surely be too coarse grained if
applied to the code snippet reported in Figure 1: here the requested transaction
could take some time to be executed, thus the application cannot be constrained
to serve just a single client for all that time. In this situation, an alternative
solution that does not require fine-grained locking primitives consists in moving
the UPDATE statement just before the execution of the requested transaction,
then lock the table before the first SELECT query and unlock it both after
the UPDATE statement and in the else branch. This solution is a simple two-
phase commit algorithm that requires an additional error handling procedure:
the credit is immediately withdrawn from the balance and must be restored if
the transaction fails.

Thus, the effectiveness and the efficiency of a synchronization solution is highly
application dependent. Automatically fixing race conditions by introducing ap-
propriate locking statements, without affecting the efficiency of the whole ap-
plication, is surely a rather complex task. In fact, it would be quite simple to
blindly insert locking statements around a supposed critical region, but it would
be significantly harder to do so also avoiding deadlocks and without reducing
the performances of the web-based application. We plan to investigate on similar
automatic techniques in future work.

5 Related Work

Race conditions are probably one of the oldest software problems and their im-
plications have extensively been discussed in literature [7]. There has been a
substantial amount of research work on the detection of this kind of concurrency
problem, both for debugging and for security purposes. To the best of our knowl-
edge, this paper is the first one to focus on the implications of race conditions
on web-based application, so in the present section we will discuss alternative
solutions directed toward traditional (i.e. non web-based) applications.

Static analysis. Many static race detectors perform compile-time analyses over
a program’s source code in order to detect if a race condition could occur in any
possible program execution [18,19]. Other approaches [20,21] modify a program-
ming language’s type system so that the resulting language is guaranteed to be
race-free. Usually, the major drawback of these tools is an high false positive
rate: by reasoning over an application’s source code without running it, these
approaches are often forced to make some conservative assumptions about pos-
sible thread interleavings that could occur at run-time. Moreover, often static
methods require a substantial amount of annotation code in order to suppress
false positives.

Dynamic analysis. Dynamic methods work by instrumenting and executing a
program. These tools are typically easy to use and are more accurate than static
methods, as they can observe a concrete execution of the application. On the
other side, they are not sound: dynamic approaches can only assert the presence
of a synchronization issue on a program path that has been executed, but they
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cannot prove the absence of race conditions. Several methods [22,23] are based on
the dynamic computation of Lamport’s happens-before relation [24], that outputs
a partial ordering on program statements. Other methods [25,26] use lockset -
based analysis [27], that stem from the assumption that race conditions occur
because a programmer forgot to protect a shared variable with an appropriate
lock. Basically, each shared variable is associated with a lockset that contains
locks held during accesses to this variable; if a lockset becomes empty, then a
race condition could occur. Some approaches [28,29] have also been proposed that
blend together the advantages of both these techniques. Finally, another dynamic
method [30] aims to prevent the exploitation of race condition vulnerabilities on
filesystem operations, by keeping track of possible interferences between the
actions performed by different processes: if a filesystem operation is found to
be interfering with another one, then the corresponding process is temporarily
suspended.

Model checking. Model checking is a powerful formal verification technique that
has also been applied to the detection of concurrency problems [31]. A model
checker receives as input a simplified version of an application’s source code
and exhaustively explores its execution states, searching for possible violations
of some asserted conditions. For example, some model checking tools have al-
ready been proposed to analyze concurrent Java programs for synchronization
issues [32]. Unfortunately, the application of model checking to large software
systems is still problematic. Moreover, often a significant effort is required in
order to build the simplified model to be supplied to the analysis tool.

Our proposed detection strategy can surely be classified as a completely dy-
namic detection method. However, the web environment shows some peculiarities
that lead to rather different problems than the ones discussed in the aforemen-
tioned works. In fact, currently web programmers are not aware of the implica-
tions of the lack of proper synchronization on their applications, while traditional
concurrent programs are actually written with synchronization in mind. Thus,
the approaches discussed above are mainly focused on analyzing the correctness
of a programmed synchronization policy. Instead, our work aims to make explicit
the implicit interactions among different instances of a sequential code that can
be executed concurrently.

6 Conclusions

In this paper we discussed race conditions in web applications. Race conditions
are a well-known security problem, but their impact on web-based programs has
not been explored sufficiently. We showed that, by exploiting unforeseen inter-
actions between different script instances, a malicious user could be able to alter
the behavior of a web application as it was intended by the programmer. We
further deep our analysis in order to investigate concurrency issues that could
arise because of the interactions between different instances of the same applica-
tion script when accessing to a SQL-enabled relational database. We proposed
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a dynamic detection method that allowed us to locate several security-relevant
race conditions even in mature and well-tested web applications.

In the future, we plan to refine our detection method by considering how in-
stances of different web application scripts could affect each others. Moreover, we
will improve our detection strategy by extracting some additional information
from the application through the employment of more sophisticated program
analysis techniques, thus overcoming some of the limitations discussed during
Section 3.5. Finally, as web programmers will get aware about concurrency prob-
lems, they will surely start to try to solve these issues by using some synchro-
nization primitives. So, we plan to improve our analyses to include support for
validating their use.
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Abstract. Taint-tracking is emerging as a general technique in software security
to complement virtualization and static analysis. It has been applied for accurate
detection of a wide range of attacks on benign software, as well as in malware
defense. Although it is quite robust for tackling the former problem, application
of taint analysis to untrusted (and potentially malicious) software is riddled with
several difficulties that lead to gaping holes in defense. These holes arise not only
due to the limitations of information flow analysis techniques, but also the nature
of today’s software architectures and distribution models. This paper highlights
these problems using an array of simple but powerful evasion techniques that
can easily defeat taint-tracking defenses. Given today’s binary-based software
distribution and deployment models, our results suggest that information flow
techniques will be of limited use against future malware that has been designed
with the intent of evading these defenses.

1 Introduction
Information flow analysis has long been recognized as an important technique for de-
fending against attacks on confidentiality as well as integrity [6,8]. Over the past quarter
century, information flow research has been concentrated on static analysis techniques,
since they can detect covert channels (e.g., so-called implicit information flows) missed
by runtime monitoring techniques.

Static analyses for information-flow have been developed in the context of high-level,
type-safe languages, so they cannot be directly applied to the vast majority of COTS
software that is available only in binary form. Worse, software obfuscation and encryp-
tion techniques commonly employed in malware (as well as some benign software for
intellectual property protection) render any kind of static analysis very difficult, if not
outright impossible. Even in the absence of obfuscation, binaries are notoriously hard
to analyze: even the basic step of accurate disassembly does not have solutions that
are robust enough to work on large x86 binaries. As a result, production-grade tools
that operate on binaries rely on dynamic (rather than static) analyis and instrumenta-
tion [3,7,17,24,26].
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Following this observations, several researchers have recently developed dynamic
information-flow techniques for COTS binaries [10,15,29,30,36]. These techniques,
along with source-to-source based transformation approaches, have enabled accurate
detection of a wide range of attacks on trusted software1 including those based on
memory corruption [15,36], format-string bugs, command or SQL injection [2,28,43],
cross-site scripting [40], and so on. More recently, researchers have reported significant
successes in applying dynamic information flow techniques on existing malware, both
from the perspective of understanding their behavior [1], and detecting runtime viola-
tion of policies [13,34]. Although dynamic taint analysis technique is quite robust for
protecting trusted software, its application to untrusted (and potentially malicious) soft-
ware is subject to a slew of evasion techniques that significantly limit its utility. We point
out that understanding the limitations of defensive techniques is not just an academic
exercise, but a problem with important practical consequences: emerging malware does
not just employ variants of its payloads by using metamorphic/polymorphic techniques,
but instead has begun to embed complex evasion techniques to detect monitoring en-
vironments as a means to protect its “intellectual property” from being discovered. For
instance, W32/MyDoom [19] and W32/Ratos [38] adopt self-checking and code execu-
tion timing techniques to determine whether they are under analysis or not. Likewise,
self-modifying techniques — among others — are used as well (W32/HIV [18]) to
make malware debugging sessions harder [37,39]. Thus, a necessary first step for de-
veloping resilient defenses is that of understanding the weaknesses and limitations of
existing defenses. This is the motivation of our work. We have organized our discussion
into three major sections as follows, depending on the context in which information
flow is being used.

Stand-alone malware. When applied to malware, a natural question is whether the
covert channels that were ignored by dynamic techniques could be exploited by adap-
tive malware to thwart information-flow based defenses. These covert channels were
ignored in the context of trusted software since their “capacity” was deemed too small
to pose a significant threat. More importantly, attackers do not have any control over the
code of trusted software, and hence cannot influence the presence or capacity of these
channels. In contrast, malware writers can deliberately embed covert channels since
they have complete control over malware code. In this paper, we first show that it is
indeed very easy for malware writers to insert such covert channels into their software.
These evasion techniques are simple enough that they can be incorporated manually,
or using simple, automated program transformation techniques. We show that it is very
difficult to defeat these evasion techniques, unless very conservative reasoning is em-
ployed, e.g., assuming that any information read by a program could leak to any of its
outputs. Unfortunately, such weak assumptions can greatly limit the purposes to which
dynamic information flow analysis can be used. For instance, Stinson et al. [34] use in-
formation flow analysis to detect “remote-control” behavior of bots, which is identified
when arguments to security-critical system calls are tainted. If a conservative notion of
tainting is used, then all programs that communicate over the network would have to be
flagged as “bots,” which would defeat the purpose of that analysis.

1 In this paper, the term “trusted software” is used to refer to software that is trusted to be benign.
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Malware plug-ins. Next, we consider recent evolution in software deployment mod-
els that has favored the use of plug-in based architechtures. Browser helper objects
(BHOs), which constitute one of the most common forms of malware in existence to-
day, belong to this category. Other examples include document viewer plug-ins, media
codecs, and so on. We describe several novel attacks that are possible in the context of
plug-ins:

– Attacks on integrity of taint information. Malware can achieve its goal indirectly
by modifying the variables used by its host application, e.g., modifying a file name
variable in the host application so that it points to a file that it wants to overwrite. Al-
ternatively, it may be able to bypass instrumentation code inserted for taint-tracking
by corrupting program control-flow.

– Attacks based on violating application binary interface, whereby malware violates
assumptions such as those involving stack layout and register usage between callers
and callees.

– Race-condition attacks on taint metadata. Finally, we describe attacks where mal-
ware races with benign host application to write security-sensitive data. In a success-
ful attack, malware is able to control the value of this data, while the taint status of
the data reflects the write operation of benign code.

While conservative notions of tainting could potentially be used to thwart these at-
tacks [33], this would restrict the applicability of information-flow techniques even
more.

Analyzing future behavior of malware. Today’s malware is often packaged with
software that seems to provide legitimate functionality, with malicious behavior ex-
posed only under certain “trigger conditions”, e.g., when a command is received from a
remote site controlled by an attacker. Moreover, malware may incorporate anti-analysis
features so that malicious paths are avoided when executed within an analysis environ-
ment. To uncover such malicious behavior, it is necessary to develop techniques that can
reason about program paths that are not exercised during monitoring. While one may
attempt to force execution of all program paths, such an approach is likely to be very
expensive, and more likely to suffer from semantic inconsistencies that may arise due to
forcing execution down branches that are not taken during execution. A more selective
approach has been proposed by Moser et al. [1] that explores paths guarded by tainted
data, rather than all paths. This technique has been quite successful in the context of ex-
isting malware. The heart of this approach is a technique that uses a decision procedure
to discover memory locations that could become tainted as a result of program execu-
tion, and explores branches that are guarded by such data. In Section 4, we show that
these trigger discovery mechanisms (and more generally, the technique for discovering
which data items can become tainted) can be easily evaded by purposefully embedding
memory errors in malicious code.

Paper organization. Sections 2 through 4 describe our evasion techniques, organized
along the lines described above. Where possible, mitigation of these evasions and their
implications on information flow analyses are discussed as well. A summary of related
work is provided in Section 5, followed by concluding remarks in Section 6.
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2 Stand-Alone Untrusted Applications
For the sake of concreteness, we discuss the impact of evasion attacks, as well as mit-
igation measures, in the context of the “remote control” behavior detection technique
presented by Stinson et al. [34], although the evasion techniques themselves are appli-
cable against other defenses as well, e.g., dynamic spyware detection [13].

Stinson et al. observed that bots receive commands from a central site (“bot-herder”)
and carry them out. This typically manifests a flow of information from an input op-
eration (e.g., a read system call) to an output operation (e.g., the file named in an
open system call). Their implementation relied on content-based tainting: i.e., taint
was assumed between x and y if their values matched (identical or had large com-
mon substrings) or if their storage locations overlapped. As noted by the paper authors,
content-based tainting is particularly vulnerable: it can easily be evaded using simple
encoding/decoding operations, e.g., by XOR’ing the data with a mask value before its
use. However, the authors suggest that a more traditional implementation of runtime
information flow tracking [15] would provide “thorough coverage” and hence render
attacks much harder. Below, we describe simple evasion measures that allow malware
to “drive a truck” through the gaps in most dynamic taint-tracking techniques, and pro-
ceed to discuss possible mitigation mechanisms and their implications.

2.1 Evasion Using Control Dependence and Implicit Flows

Dynamic information flow techniques that operate on trusted software tend to focus on
explicit flows that take place via assignments. It is well known that information can flow
from a variable y to another variable x without any explicit assignments. Indeed, a num-
ber of covert channels for information flow have been identified by previous research
in this area. We demonstrate the ease of constructing evasion attacks using these covert
channels. We focus on two forms of non-explicit flow, namely, control dependences and
implicit flows.

Control dependence arises when a variable is assigned within an if-then-else state-
ment whose condition involves a sensitive (tainted2) variable, e.g.,

if (y = 1) then x := 1; else x := 0; endif

Clearly, the value of x is dependent on y, even though there is no assignment of the
latter to the former. In particular, the above code snippet enables copying of a single bit
from y to x without using direct assignments between them. Using an n-way branch
(e.g., a switch statement with n cases) will allow copying of log n bits. A malware
writer can propagate an arbitrarily large amount of information without using explicit
flows by simply enclosing the above code snippet within a loop.

Implicit flows arise by virtue of semantic relationships that exist between the values
of variables in a program. As an example, consider the following code snippet that
allows copying of one bit of data from a sensitive variable y to w without using explicit
flows or control dependences:

2 Typically, the term “taint” is used in the context of integrity, while “sensitive” is used in the
context of confidentiality.
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1. x := 0; z := 0;
2. if (y = 1) then x := 1; else z := 1; endif
3. if (x = 0) then w := 0; endif
4. if (z = 0) then w := 1; endif

At line 2, if y = 1 then x is marked sensitive because of control-dependent assign-
ment in the then-clause. Since there is no assignment to z in the then-clause of line 2,
it is not marked sensitive. Moreover, the condition at line 3 will not hold because x
was assigned a value of 1 at line 2. But the condition at line 4 holds, so w is assigned
the value of 1, but it is not marked sensitive since z is not sensitive at this point. Now,
consider the case when y = 0. Following a similar line of reasoning, it can be seen that
w will be assigned the value 0 at line 3, but it will not be marked sensitive. Thus, in
both cases, w gets the same value as y, but it is not marked as sensitive.

As with control dependences, a malware writer can copy an arbitrarily large number
of bits using nothing but implicit flow by simply using a slightly more sophisticated
example of the above code. It is thus trivial for a malware writer to evade taint-tracking
techniques that track only direct data dependencies and control dependencies.

2.2 Difficulty of Mitigating Evasion Attacks

To thwart control-dependence-basedevasion, a taint-tracking technique can be enhanced
to track control dependences. This is easy to do, even in binaries, by associating a taint
label with the program counter (PC) [13]3. Unfortunately, this will lead to an increase in
false positives, i.e., many benign programs will be flagged as exhibiting remote-control
behavior. To illustrate this, consider the following code snippet that might be included
in a program that periodically downloads data from the network, and saves it in different
files based on the format of the data. Such code may be used in programs such as weather
or stock ticker applets:

int n = read(network, y, 1);
if (∗y == ’t’)

fp = fopen(”data.txt”, ”w”);
else if (∗y = ’i’)

fp = fopen(”data.jpg”, ”w”);

Note that there is a control dependence between data read over the network and
the file name opened, so a technique that flags bots (or other malware) based on such
dependence would report a false alarm. More generally, input validation checks can
often raise false positives, as in the following example.

int n = read(network, y, sizeof(y));
if (sanity check(y)) {

fp = fopen(”data”, ”w”);
...

} else { ... // report error }

In the context of benign software, false positives due to control dependence tracking
can be managed using developer annotations (so-called endorsement or declassification

3 Specifically, the PC is tainted within the body of a conditional if the condition involves tainted
variables. Moreover, targets of assignments become tainted whenever the PC is tainted. Finally,
the taint label of the PC is restored at the merge point following a conditional branch.
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annotations). We obviously cannot rely on developer annotations in untrusted software;
it is also impractical for code consumers, even if they are knowledgeable programmers
or system administrators, to understand and annotate untrusted code, especially when it
is distributed in the form of binaries.

Mitigating implicit-flow based evasion is even harder. It has been shown that purely
dynamic techniques cannot detect implicit flows [42]. This is because, as illustrated
by the implicit flow example above, it is necessary to reason about assignments that
take place on unexecuted program branches. On binaries, this amounts to identify the
memory locations that may be updated on program branches that are not taken. Several
features of untrusted COTS binaries combine to make this problem intractable:

– Address arithmetic involving values that are difficult to compute statically
– Indirect data references and indirect calls
– Lack of information about types of objects
– Absence of size information for stack-allocated and static objects (i.e., variables)
– Possibility that malicious code may violate low-level conventions and requirements

regarding the use of stack, registers, control-flow, etc.

As a result, it is unlikely that implicit flows can be accurately tracked for the vast ma-
jority of today’s untrusted software that gets distributed as x86 binaries.

2.3 Implications

Evasion measures described above can be mitigated by treating (a) all data written by
untrusted code as tainted (i.e., not trustworthy), and (b) all data written by untrusted
code as sensitive if any of the data it has read is sensitive. For stand-alone applications,
these assumptions mean that all data output by an untrusted process is tainted, and
moreover, is sensitive if the process input any sensitive data. In other words, this choice
means that fine-grained taint-tracking (or information flow analysis) is not providing
any benefit over a coarse-grained, conservative technique that operates at the granularity
of processes, and does not track any of the internal actions of a process.

In the context of detecting remote-control behavior, we observe that in the absence
of evasion measures, the use of dynamic information flow techniques enables us to dis-
tinguish between malicious behavior, which involves the use of security-critical system
call arguments that directly depend on untrusted data, and benign behavior. The use
of evasion techniques can easily fool taint-tracking techniques that only reason about
explicit flows. If the technique is enhanced to reason about control dependences, eva-
sion resistance is improved, but as illustrated by the examples above, many more false
positives are bound to be reported, thus significantly diminishing the ability of the tech-
nique to distinguish between malicious and benign behaviors. If we further enhance
evasion resistance to address all implicit flows, we will have to treat all data used by an
untrusted application to be tainted, thereby completely losing the ability to distinguish
between benign and malicious behavior.

In summary, the emergence of practical dynamic taint-tracking techniques for bina-
ries enabled high-precision exploit detection on trusted code. This was possible because
the presence of explicit information flow from untrusted source to a security-critical sink
indicated the ability of an attacker to exert a high degree of control over operations that
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have a high risk of compromising the target application — a level of control that was
unlikely to be intended by the application developer. It seemed that a similar logic could
be applied to untrusted code, i.e., a clear distinction could be made between acceptable
uses of tainted data that are likely to be found in benign applications from malicious uses
found in malware. The discussion so far shows that this selectivity is lost once malware
writers adapt to evade information flow techniques.

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as an extension to large soft-
wares such as client-side web applications or the operating system. Applications such
as web browsers and email clients are attractive targets for malware authors, because
of the ubiquitous use of these applications in online financial transactions and private
information exchange.

Nearly all large web browsers have software extension mechanisms that that allow
adding various forms of additional functionality, such as better GUI services, auto-
matic form filling, and viewing various forms of multimedia content. We refer to such
browser extensions as browser helper objects (BHOs)4. Perhaps surprisingly, almost
all browsers today have extensibility mechanisms that allow extension packages to be
shipped with third-party libraries in binary form. Due to the growing user trends towards
installing off-the-shelf extensions and due to increasing drive-by-downloads, malware
spread in form of BHOs has been rampant.

Recent works [13] have proposed using information flow to track the flow of confi-
dential data such as cookies, passwords and credentials in form-data as it gets processed
by web browser. The idea is to monitor the actions of malware masquerading as benign
BHOs, which is loaded in the address space of the browser, and to detect if confidential
data is leaked by the BHOs. The crux of the problem is to selectively identify mal-
ware’s actions. Essentially, their technique uses an attribution mechanism to classify
actions that access system resources, to trusted and untrusted contexts. System calls
or operations made directly by the BHO or by a host browser function called on its
behalf, are attributed to the untrusted context, while those by the host browser itself
belong to the trusted context. In the untrusted context, any sensitive data processed is
flagged “suspicious.” The presence of this data at output operations that perform writes
to networks/files signals the leakage of confidential data effected by the BHO. Although
these methods are successful in analysis and detection of current malware, they are not
carefully designed to detect adaptive malware that employs evasion techniques against
the specific mechanisms proposed in these defenses. Below, we present several such
evasion attacks. We remind our readers that the techniques presented in the previous
section continue to be available to malware that operates within the address space of a
(benign) host application. In this section, our focus is on additional evasion techniques
that become possible due to this shared address space.

4 Browser extensions are named in different ways. Internet Explorer uses the terms “BHOs”,
“extensions” and “toolbars”, while Gecko-based browsers (e.g., FireFox) use the terms “plug-
ins” and “extensions”. We use the term BHO for all these terms interchangeably in the paper.
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3.1 Attacks Using Arbitrary Memory Corruption

Corruption of untainted/insensitive data to effect leakage. By corrupting the mem-
ory used by the host application, a malicious BHO can induce the host application to
carry out its tasks outside the untrusted context. For instance, a privacy-breaching mal-
ware does not necessarily need to read the confidential data itself and pass/copy it to
external network interfaces. Instead, it could corrupt the data used by the browser (i.e.,
the host application) such that the browser unknowingly leaks this information. We
present the basic idea for an attack that avoids direct manipulation of any sensitive data
or sensitive pointers. Instead, it corrupts higher level untainted pointers that point to
the sensitive data. Consider a pointer variable p in the browser code that refers to data
items to be transmitted over the network. A malware can corrupt p to point to sensi-
tive data (say s) of its choice, stored within the browser memory. This way a malicious
BHO can arrange for s to be transmitted over the network, without being detected by
techniques described in [13]. Similarly, a BHO may corrupt a file descriptor as well, so
that any write operation using this file pointer will result in the transmission of sensitive
data over the network. Vulnerable pointers and data buffers needed for these attacks are
rife in large systems. Moreover, they are easily forgeable because of the high degree of
address space sharing between the host browser and extensions.

Optimistic assumptions about data originating from untrusted code. Another ba-
sic idea for attack involves using seemingly harmless data, such as constants, which are
treated as untainted by most techniques [13,45] for corruption of browser data struc-
tures. Treating constants in untrusted code or any data under the control of the malware
as untainted is anyway problematic, and specially so in binary code where constants
may be addresses. The attack involves overwriting an untainted pointer p, that may
initially point to a sensitive data s, with an untainted value such as constant memory
address m. When the browser uses m for a critical operation, such as determining the
destination for sending s, this threat becomes very significant as shown below.

A real attack. We now present an example that illustrates how a BHO can corrupt
a data pointer to violate a policy that prevents leakage or tampering of sensitive infor-
mation, like the user’s cookies, by the BHO. The example has been tested on Lynx, a
textual browser which does not have a proper plugin framework support5. However, it
uses libraries to enhance its functionalities and, as they are loaded into Lynx’s address
space, they can be considered as untrusted components. In fact, the attack’s result could
be applied to a different browser application (e.g., Internet Explorer, FireFox) with a
full-blown plug-in framework.

The attack consists of modifying the domain name in the cookie, and is illustrated in
the figure below. In Lynx, all cached cookies are stored in a linked-list cookie_list
(note that cookie_list is not sensitive as only the sequence of bytes containing
cookies value is). Subsequently, when the browser has to send a cookie, the domain is
compared using host_compare (not shown) which calls stringcasecmp. A plug-
in can traverse the linked list, and write its intended URL to the domain pointer field
in cookie record. On enticing the user to visit a malicious web site, such as evil.com,

5 Lynx has been chosen to simplify the example.
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these cookies would automatically be sent to the attacker web site, thereby subverting
the implementation of the Same Origin Policy. The point to note in this example is that
the domain pointer will be untainted; the object it points to will be tainted or sensitive.
These higher level pointers themselves are not sensitive, therefore they can be corrupted
without raising suspicion.

typedef struct cookie {
char ∗domain;
...

} cookie;

typedef struct HList {
void ∗object;
HTList ∗next;

} HTList;
...
extern HTList ∗cookie list;
...
void change domain(void) {

HTList ∗p = cookie list;
char ∗new domain = strdup(”evil.com”);
for (; p; p = p−>next) {

cookie ∗tmp = (cookie ∗)p−>object;
tmp−>domain = new domain;

}
}

// pointer to the domain this cookie belongs to

// declared by the core of the browser

// untrusted plugin functions
// untainted ptr −− the list itself is not tainted
// untainted string
// iterating over an untainted list gives untainted ptrs
// tmp takes the address of a cookie object −− untainted
// changing an untainted pointer with an untainted address

// Function exit

Implications

The above example shows how confidential data can leak without being read. The ap-
proach proposed in [13] does not deal with this threat. Recall that sensitive data is
marked “suspicious”(to use the terminology defined in [13]), only when the untrusted
BHO uses the sensitive data itself or propogates it to the external interfaces. Conse-
quently, the malware can overwrite the domain pointer with an address value (which
is untainted) of choice, without causing the suspicious flag to be set.

To detect the aforementioned evasion attacks, an information flow technique needs
to incorporate at least the following two features. First, in order to detect the effect of
pointer corruption (of pointers such as those used to point to data buffers), the technique
must treat data dereferenced by (trusted) browser code using a tainted pointer as if it
is directly accessed by untrusted code. Second, it must recognize corruption of point-
ers with constant values. Otherwise, the above attack will succeed since it overwrites a
pointer variable with a constant value that corresponds to the memory location of sen-
sitive data6. Considering every write performed by the untrusted BHO to be tainted, as
suggested previously (therefore, considering everything written by the untrusted BHO
as “suspicious”), may be a too conservative a strategy. It may yield high false positives
in the cases where plugins access sensitive data but do not leak it. Though, applying
conservative tainting specifically to recognize control data as done in [44] seems rea-
sonable, this may raise significant false positives when applied for identifying all data
that is possibly controlled by the plugin.

6 Such pointers reside often enough on global variables whose locations can be predicted in
advance and hard-coded as constants in the malware.
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3.2 Attacking Mechanisms Used to Determine Execution Context

In a shared memory setting, it is necessary to distinguish the execution of untrusted
extension code from that of trusted host application code. To make this distinction, the
detection approach needs to keep track of a code execution context. The logic used for
maintaining this context is an obvious target for evasion attacks: if this logic can be
confused, untrusted code could execute with the privileges of trusted code. A more sub-
tle attack involves data exchanged between the two contexts. Since execution in trusted
context affords more privileges, untrusted code could achieve its objectives indirectly
by corrupting data (e.g., contents of registers and the stack) that is communicated from
untrusted execution context to the trusted context.

Although the targets of evasion attack described above are generally independent of
implementation details, the specifics of evasion attacks will need to rely on these details.
Below, we describe how such evasion attacks can work in the specific context of [13].

Attacking context-switch logic. The approach proposed [13] for context tracking
uses the following algorithm. For each instruction, the system checks whether the in-
struction belongs to the BHO code region. If so, then it saves the value of the current
stack pointer as espsaved, and the instruction is executed in untrusted context. When-
ever the instruction pointer points outside the code region of the BHO, the system has to
determine whether the instruction is executed on behalf of the BHO (i.e., untrusted con-
text) or not. For this, the proposed technique utilizes the fact that on their platform the
stack grows downwards and checks if the current stack pointer,espcurrent, is below the
espsaved. The context identification logic implicitly assumes a benign call stack model
– it assumes that the activation records are pushed on the stack, the stack data belonging
to the caller is left unchanged by the callee, and that the callee function cleans up its
activation leaving the stack pointer restored after its invocation. We point out that these
assumptions are reasonable for calls across benign code modules only. Specifically, if
the espcurrent is not less than espsaved, the context switching logic assumes that the
last untrusted BHO code stack frame has been popped off the activation stack and the
execution context does not belong to the BHO anymore. This attribution mechanism
allows valid (benign) context switches (from untrusted to trusted context) at call/return
function boundaries, when the last BHO function f is about to return and there are no
other browser functions invoked by f .

Unfortunately, we show that this attribution mechanism is insecure. Malware may
employ simple low-level attacks that subvert the control flow integrity of the applica-
tion at the host-extension interface leading to devastating attacks. The taint analysis
approach and the attribution mechanism employed in [13] point out that the mechanism
can deal with two threats that may circumvent context attribution – execution of injected
code, and attempts to adjust the stack pointer above the threshold limit by changing the
ESP register in its code. However, it does not protect against other low-level integrity
violations, such as return-into-lib(c) style [31,35] attacks, which aim to eventually exe-
cute already present code.

To be concrete, consider the scenario where the malicious BHO corrupts control
pointers, such as return addresses pushed by the calling host function, to refer to target
locations in the browser or its trusted libraries. It could additionally create a compatible
stack layout required for a return-into-lib(c) attack to perform intended action and let
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its last invoked function simply exit. Changing control pointers such as return address
above the recorded threshold stack pointer value, without making any modification to
ESP itself, is sufficient and touches no sensitive/tainted data. Such returns from un-
trusted code trigger control transfers to the attacker controlled target functions, and fur-
thermore, with arbitrarily controlled parameters on the crafted stack layout. As no other
BHO instructions are executed after such a return, subsequent code will be executed in
the browser context fulfilling the attacker’s objectives.

Implications
To counteract such a return-into-lib(c) style attack, a malware analysis has to strengthen
the attribution mechanism, to allow information flow to be correctly captured for the
different contexts.

Another work in this area, Panorama [45], proposes to label every write operation
performed by a BHO for the purpose of being able to track dynamically generated
code. But, it seems to rely on a similar attribution mechanism used in [13], and seems
vulnerable to the attack presented in the previous section as the attribution mechanism
can be circumvented. HookFinder [44], instead, is able to catch every hook implanted
into the system by an untrusted binary. To do so, they use an approach which is sim-
ilar to information flow-based techniques: they label every write operation performed
by untrusted binaries, as they want to be able to analyze any hooking attempts (regard-
less it they are made by benign or potentially malicious modules). This seems to be a
promising approach for the attribution problem. In fact, an extension to their strategy, as
the one proposed in [33], which marks context as untrusted whenever control transfers
involve tainted pointers resolves the issue of correctly attributing context.

3.3 Attacking Meta-data Integrity

Corrupting meta-data maintained by a dynamic information flow technique is another
avenue for attack. Typically, meta-data consists of one or more bits of taint per word
of memory, with the entire metadata residing in a memory-resident data structure in
memory. An obvious approach for corrupting this data involves malware directly ac-
cessing the memory locations storing metadata. Most existing dynamic information
flow techniques include protection measures against such attacks. Techniques based on
emulation, such as [13] can store metadata in the emulator’s memory, which cannot
be accessed by the emulated program. Other techniques such as [43] ensure that direct
accesses to metadata store will cause a memory fault. In this section we focus our atten-
tion on indirect attacks, that is, those that manifest an inconsistency between metadata
and data values by exploiting race conditions.

Attacks based on data/meta-data races. Dynamic information flow techniques need
to perform two memory updates corresponding to each update in the original program:
one to update the original data, and the other to update the metadata (i.e., the taint
information). Apart from emulation based approaches where these two updates can be
performed “atomically” (from the perspective of emulated code), other techniques need
to rely on two distinct updates. As a result, in a multithreaded program where two
threads update the same data, it is possible for an inconsistency to arise between data
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and metadata values. Assume, for instance, that metadata updates precede data updates,
and consider the following interleaved execution of two threads:

time Benign Thread Malicious Thread
t1 set tagx to tainted
t2 set tagx to untainted
t3 write untainted value to x
tk write tainted value to x

Note that at the end, memory location x contains a tainted value, but the correspond-
ing metadata indicates that it is untainted. Such an inconsistency can be avoided by
using mandatory locks to ensure that the data and metadata updates are performed to-
gether. But this would require acquisition and release of a lock for each memory update,
thereby imposing a major performance penalty. As a result, existing information flow
tracking techniques generally ignore race conditions, assuming that it is very hard to
exploit these race conditions. This can be true for untrusted stand-alone applications,
but it is problematic, and cannot be ignored in the context of malware that share their
address-space with a trusted application.

To confirm our hypothesis, we experimentally measured the probability of success
for a malicious thread causing a sensitive operation without raising an alarm, against
common fine-grained taint tracking implementations known today. The motivation of
this attack is to show that, by exploiting races between data and metadata updates op-
erations, it is possible to manipulate sensitive data without having them marked as sen-
sitive. To demonstrate the simplicity of the attack, in our experiment we used a simple
C program shown below (a) that executes as a benign thread. The sensitive operation
open (line 10 (a) column) depends on the pointer fname which is the primary target
for the attacker in this attack. We transform the benign code to track control-dependence
and verified its correctness, since the example is small.

1 char ∗fname = NULL, old fname = NULL;
2 void check preferences () {
3 ...
4 if (get pref name () == OK)
5 old fname = ”/.../.mozilla/.../pref.js”;
6 ...
7 while (...) {
8 fname = old fname;
9 if (fname) {

10 fp = open (fname, ‘‘w’’);
11 ...
12 }
13 }

(a)

1 void ∗malicious thread(void ∗q) {
2 int attempts = 0;
3 while (attempts++ < MAX ATTEMPTS)
4 fname = ”/.../.mozilla/.../cookies.txt”;
5

6

7

8

9

10

11

12

13 }

(b)

The attacker’s thread (b) runs in parallel with the benign thread and has access to the
global data memory pointer fname. The attacker code is transformed for taint tracking
to mark all memory it writes as “unsafe” (i.e., tainted).

We ran this synthetic example on a real machines using two different implementa-
tions of taint tracking. For conciseness, we only present the results for the taint tracking
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that uses 2 bits of taint with each byte of data, similar to [43], with all taint track-
ing code inlined, as this minimizes the number of instructions for taint tracking and
hence the vulnerability window. Assuming that the get pref name call fails to re-
turn OK, on a quad-core Intel Xeon machine running Linux 2.6.9 SMP kernel, we found
that chances that the open system call executes with the corresponding pointer fname
marked “safe” (i.e., untainted) varies from 60%−80% across different runs. The reason
why this happens is because the transformed benign thread reads the taint for fname
on line 8 and sets the control context to tainted scope, before executing the original
code for performing conditional comparison on line 9. The malicious thread tries to in-
terleave its execution with the one of the benign thread, trying to achieve the following
ordering of operations on the shared variable fname:

Time Operation Thread (Line No.)
t1 read tagfname �→ untainted Benign (9)
t2 write tagfname := tainted Malicious (4)
t3 write fname := ”/home/user/.mozilla/.../cookies.txt” Malicious (4)
t4 read fname Benign (9)

If such an ordering occurs, the tagfname read by the benign thread is marked un-
tainted as the benign thread has cleared the taint previously, while the data happens
to contain an attacker controlled value about user browser cookies. Consequently, con-
trary to the intention of the instrumentation of tracking control-dependence, the attacker
manages to prevent control scope from switching to tainted scope at line 9 in the benign
code. In practical settings, the window of time between t1 and t4 varies largely based
on cache performance, demand paging, and scheduling behaviour of specific platform
implementations. Finally, it is worth noting that the attacker could improve the likeli-
hood of success by increasing the scheduling priority of the malicious thread and lower,
where possible, those of benign thread.

Implications
Attacks on direct corruption of metadata has been studied before [43] and thwarted
by implementations using virtual machines and emulators which explicitly manage
the context switches between threads or processors. However, much of the design of
such metadata tracking monitors has not been carefully studied in the context of multi-
threaded implementations (or multi-processor emulators), and techniques in this section
highlight the subtle importance of these.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze untrusted software. Broadly speaking,
these strategies can be divided in two main categories, the ones based on static analy-
sis and the others which adopt a dynamic analysis approach. While static analysis has
the potential to reason about all possible behaviors of software, the underlying com-
putational problems are hard, especially when working with binary code. Moreover,
features such as code obfuscation, which are employed by malware as well as some
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legitimate software, make it intractable in practice. As a result, most practical malware
analysis techniques have been focussed on dynamic analysis.

Unfortunately, dynamic analysis can only reason about those execution paths in a
program that are actually exercised during the analysis. Several types of malware do
not display their malicious behavior unless certain trigger conditions are present. For
instance, time bombs do not exhibit malicious behavior until a certain date or time. Bots
may not exhibit any malicious behavior until they receive a command from their master,
usually in the form of a network input.

In order to expose such trigger-based behavior, Moser et al. [1] suggested an interest-
ing dynamic technique that combines the benefits of a static and dynamic information-
flow analyses. Specifically, they taint trigger-related inputs, such as calls to obtain time,
or network reads. Then, dynamic taint-tracking is used to discover conditionals in the
program that are dependent on these inputs. When one of the two branches of such a
conditional is about to be taken, their technique creates a checkpoint and a snapshot of
the analyzed process, and keeps exploring one of the branch. Subsequently, when the
exploration of the taken branch ends or after a timeout threshold is reached, their tech-
nique forces the execution of the unexplored branch. Such forcing requires changing the
value of a tainted variable v used in the conditional, so that the value of the condition
expression is now negated. By leveraging on a decision procedure to generate a suitable
value for v, the proposed approach also identifies any other variables in the program
whose values are dependent on v, and modifies them so that the program is in a consis-
tent state7. We observe that this analysis technique has applicability to certain kinds of
anti-virtualization or sandbox-detection techniques as well. For instance, suppose that
a piece of malware detects a sandbox (or a VM) based on the presence of a certain file,
process, or registry entry. The approach proposed can then taint the functions that query
for such presence, and proceed to uncover malicious code that is executed only when
the sandbox is absent.

Since the underlying problems the analysis proposed by Moser et al. has to face are
undecidable in general, their technique is incomplete, but seems to work well in prac-
tice against contemporary malware. However, this incompleteness can be exploited by
a malware writer to evade detection. For instance, as noted by the authors of [1], a con-
ditional can make use of one-way hash function. It is computationally hard to identify
values of inputs that will make such a condition true (or false). More generally, malware
authors can force the analysis to explore an unbounded number of branches, thereby
exhausting computational resources available for analysis. However, the approach pro-
posed in [1] will discover this effort, and report that the software under analysis is
suspicious. A human analyst can then take a closer look at such malware. Nonetheless,
today’s malware writer places high value on stealth, and hence would prefer alternative
anti-analysis mechanisms that do not raise suspicions, and we describe such primitives
next.

7 This is required, or else the program may crash or experience error conditions that would not
occur normally. For instance, consider the code y = x; if (x == 0) z = 0; else
z = 1/y; If we force the value of x to be nonzero, then y must also take the same value or
else the program will experience a dive-by-zero exception.
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4.1 Evasion Using Memory Errors

Binary code is generally hard to analyze, as briefly pointed out in Section 2.2. For
instance, this is due to the absence of information about variables boundaries and types,
which makes many source-based analyses inapplicable to binaries. We observe that
given an arbitrary binary, it is hard to say whether it potentially contains a vulnerability
such as a memory error (e.g., buffer overflow), and to determine the precise inputs to
exploit it. Exhaustively running the binary on all possible inputs is often infeasible for
benign code, leave alone malware which is expected to exploit the exponential nature
of exhaustive searches to cause the worst-case hit each run.

Motivated by this observation, we present an attack against dynamic information
flow-based analyses used to analyze malware behavior, similar to the one presented
in [1]. This attack is able to hide malicious code from being discovered and further
strengthen it such that extensions to analysis employed in [1] are unable to detect it.
Our attack leverages on the introduction of memory errors, as shown in the following
example.

1 int trigger;
2 ...
3 void procInput(void) {
4 int ∗p = &buf[0];
5 char buf[4096];
6 ...
7 my gets(buf);
8 ...
9 ∗p = 1;

10 ...
11 if (trigger)
12 malcode();
13 }

The introduced memory error is a plain stack-based buffer overflow vulnerability8.
The attacker’s goal is to write past the end of buf (line 7) and corrupt the pointer p
to make it point to the variable trigger. Eventually, when the vulnerability will be
exploited, the malware will set trigger to 1 (line 9) which in turn has the effect to dis-
close the malicious code represented by malcode() at line 12, guarded by trigger.
It can be observed that the lack of proper bound checking in the code snipped shown
above is not to be considered as a suspicious pattern by itself. The mere use of an un-
safe function as my_gets9 does not imply that there is a memory error. In fact, bound
checking could have been performed elsewhere by the programmer (which justifies the
use of an unsafe function), or the programmer knows that at that point the input can
never be bigger than buf.

In order to disclose the malicious code during analysis, the variable trigger has
to eventually be marked as tainted, so that the code it guards can be further analyzed.
The variable trigger is never tainted unless p, which can potentially be corrupted

8 It is important to note that there are no constraints on the type of vulnerability introduced. A
generic buffer overflow, an integer overflow, or a (custom) format string vulnerability would
have done as well.

9 This function resembles the well-known libc gets. The malware author can either use its own
implementation or the one provided by the C library.
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with tainted data by the malware, points to it. The problem of determining whether p
could point to trigger is undecidable statically, thus augmentations to [1] using some
form of static analysis do not help. On the other end, one might argue that the dynamic
approach proposed in [1] could potentially accomplish the detection of the overflow, at
least (while it is unlikely that the correct vulnerability exploitation can be achieved).
In fact, given the aforementioned example, it is fairly easy for the analysis technique
considered to generate a big-enough input which will eventually corrupt the pointer p.
Even if such a technique is employed, we show that we can extend this example to make
it even harder – if not unfeasible – to achieve this step.

To this end, it would be desirable to have a function f that is easy to compute,
but hard to reason about some properties of it. By doing so, it is possible to modify
the previous example in such a way to make it harder for the analyzer to even detect
whether a memory error vulnerability is present or not. Such a situation is depicted by
the following code snippet (the action performed by this code can be found in benign
program as well).

...
int trigger;
...
void procInput(void) {

int pad, n, l;
char buf[4096+256];
int ∗p = &pad;
char ∗dst;

...
n = read(s, buf, sizeof (buf));
l = computespace(buf, n);
// make sure we have enough room
dst = alloca(l + 128);
decode(buf, l, dst);
...
∗p = 1;
...
if (trigger)

malcode();
...

}

int computespace(char ∗src, int nread) {
int i, k = 0;
for (i = 0; i < nread; i++) {

switch(src[i]) {
case 0: k++; break;
...
case 255: k++; break;

}
}
return k;

}

void decode(char ∗src, int nread, char ∗dst) {
int i, j;
for (i = 0, j = 0; i < nread; i++, j++) {

switch(src[i]) {
case 0: dst[j] = src[i]; break;
...
case 113: dst[j++] = src[i];

dst[j] = src[i];
break;

case 114: dst[j] = src[i]; break;
...
case 255: dst[j] = src[i]; break;

}
}

}

It is worth noting that the function computespace is easy to compute, but is rela-
tively hard to reason about some properties of it. For instance, by looking at the source
code, it is easy to understand that at the end of the computation k holds the same value
as the length of the data read into the buffer buf. On the other end, the same reasoning
can be hard to do on binaries and in an automated way. Thus, it is hard to correlate n,
the number of read bytes, to l, the minimum number of space to allocate to be sure the
function decode does not cause overflow. The function decode presents a problem
by itself, by deliberately introducing the condition for an overflow to occur. In fact, it
can cause dst to overflow into p if the number of bytes given as input (buf) whose
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ASCII value is 113 exceed a certain threshold. Only an exhaustive search over all the
possible input values and combination would deterministically trigger this memory er-
ror. Unfortunately, such an enumeration would be extremely onerous if not impossible
to perform. Similar to NP-complete problems which are hard to solve while verification
of correct answers is easy, it is rather simple for the attacker to provide the right input
which will cause dst to overflow so that p can be corrupted in such a way to eventually
disclose the malicious behavior. From the analysis point of view, instead, an exhaustive
search will probably start with a sequence of length 1, trying all the possible 256 ASCII
values. This does not cause overflow as there is a safe padding of 128 bytes for dst.
Following this reasoning, a sequence of length k and 256k combination have to be tried.
For instance, a k equal to 128 can reach the boundaries of dst. This, however, would
roughly require to test 256127 combinations to try out on average which is a fairly huge
number.

Hiding malicious payload using interpreters. As a final point, we note that the ma-
licious payload need not even to be included in the program. It can be sent by an attacker
as needed. We can use the techniques described above to prevent the malware analyzer
from identifying this possibility.

One common technique for hiding payload has been based on code encryption. Un-
fortunately, this technique involves a step that is relatively unusual: data written by a
program is subsequently executed. This step raises suspicion, and may prompt a careful
manual analysis by a specialist. Malware writers would prefer to avoid this additional
scrutiny, and hence would prefer to avoid this step. This can be done relatively easily
by embedding an interpreter as the body of the function malcode() in the attack de-
scribed above. As a result, the body of the interpreter can escape analysis. Moreover,
note that interpreters are common in many types of software: documents viewers such
as PDF or Postscript viewers, flash players, etc, so their presence, even if discovered,
may not be unusual at all. Finally, it is relatively simple to develop a bare-bones assem-
bly language and write an interpreter for it. All of these factors suggest that malware
writers can, with modest effort, obfuscate execution of downloaded code using this
technique, with the final goal to hide malicious behavior without raising any suspect.

4.2 Implications

The implications on whether dynamic information flow-based techniques can help to
disclose, analyze, and understand the behavior of the next-generation of malware is
similar to the ones pointed out in the rest of this paper. In fact, to detect the evasion
technique proposed in the previous section, an information flow-based approach should
ideally be able to trigger any memory error which may be present in the analyzed soft-
ware, and automatically exploit the vulnerability so that interesting (i.e., tainted) pre-
viously disabled conditions will be examined. In the previous section we have shown
how this could be hard – if not impossible – at all to achieve, if directly faced. Alter-
natively, information flow analyses could taint any memory location, considering all
the possible combinations, and see how information is propagated. While this would
eventually taint trigger and thus disclose the malicious behavior, it would drop the
benefits provided by taint-tracking mechanisms which focus the analysis on interesting
data, as every paths would be forced to be explored. For instance, the resulting analysis
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would be similar to the one proposed in [9] where, even if the underlying technique is
different, the end result is that every path can potentially be explored, which of course
is a hard task by itself. For instance, one may attempt to force execution of all program
paths, but this is likely to be very expensive, and to suffer from semantic inconsisten-
cies that may arise due to forcing execution down branches that are not taken during
execution.

5 Related Work

Informationflowanalysishasbeenresearchedfora long time[6,12,14,20,23,32,41].Early
research was focused on multi-level security, where fine-grained analysis was not deemed
necessary [6]. More recent work has been focused on language-based approaches, capa-
ble of tracking information flow at variable level [27]. Most of these techniques have been
based on static analysis, and assume considerable cooperation from developers to provide
various annotations, e.g., sensitivity labels for function parameters, endorsement and de-
classification annotations to eliminate false positives. Moreover, they typically work with
simple, high-level languages, while much of security-critical contemporary software is
written in low-level languages like C that use pointers, pointer arithmetic, and so on. Fi-
nally, it can be noted that despite their benefits static analyses are generally vulnerable to
obfuscation scheme, as recently remarked by [22]. Therefore, it is reasonable to rely on
dynamic or hybrid approaches, instead. As a result, information flow tracking for such
software has been primarily based on run-time tracking of explicit flows that take place
via assignments.

Recently, several different information flow-based approaches have been proposed
in the literature [11,15,16,30,36,43]. They give good and promising results when em-
ployed to protect benign software from memory errors and other types of attacks, by
relying on some implicit assumptions (e.g., no tainted code pointers should be de-
referenced). The reason is because benign software is not designed to facilitate an at-
tacker task, while malware, as we have seen, can be carefully crafted to embed evasion
attacks, such as covert channels, and general memory corruption.

Probably, an ideal solution would require that untrusted binaries would carry proofs
that some properties are guaranteed. This is achieved by proof-carrying code [25]. To
be successful, this technique relies on some form of collaboration between the code
producer and consumer. For instance, Medel et al. [21] and Yu et al. [46] proposed in-
formation flow analyses for typed assembly languages. Likewise, Barthe et al. provided
non-interference properties for a JVM-like language [4] and dealt with timing attacks
by using ACID transactions [5], as well. Unfortunately, it is unlikely that malware writ-
ers (i.e., the code producer, in this context) are going to give this form of collaboration
which is necessary for the success of these approaches. Therefore, it is unlikely that
these strategies would soon be adopted as is in the context of malicious software anal-
ysis and containment.

Driven by the recent practical success of information flow-based techniques, sev-
eral researchers have started to propose solutions based on dynamic taint analysis to
deal with malicious or, more generally, untrusted code [1,13,29,34,40,44,45]. During
the last years, these techniques have been facing different tasks (e.g., classification,
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detection, and analysis) related to untrusted code analysis. Unfortunately, even if pre-
liminary results show they are successful when dealing with untrusted code that has not
been designed to stand and bypass the employed technique, as we hope the discussion in
this paper highlighted, information flow is a fragile technique that has to be supported
by new analyses to be more resilient to evasions purposely adopted by ever-evolving
malware.

6 Conclusion

Information flow analysis has been applied with significant success to the problem of
detecting attacks on trusted programs. Of late, there has been significant interest in ex-
tending these techniques to analyze the behavior of untrusted software and/or to enforce
specific behaviors. Unfortunately, attackers can modify their software so as to exploit
the weaknesses in information flow analysis techniques. As we described using several
examples, it is relatively easy to devise these attacks, and to leak significant amounts of
information (or damage system integrity) without being detected.

Mitigating the threats posed by untrusted software may require more conservative
information flow techniques than those being used today for malware analysis. For in-
stance, one could mark every memory location written by untrusted software as tainted;
or, in the context of confidentiality, prevent any confidential information from being
read by an untrusted program, or by preventing it from writing anything to public chan-
nels (e.g., network). Such approaches will undoubtedly limit the classes of untrusted
applications to which information flow analysis can be applied. Alternatively, it may be
possible to develop new information flow techniques that can be safely applied to un-
trusted software. For instance, by reasoning about quantity of information leaked (mea-
sured in terms of number of bits), one may be able to support benign untrusted software
that leaks very small amounts of information. Finally, researchers need to develop ad-
ditional analysis techniques that can complement information flow based techniques,
e.g., combining strict memory access restrictions with information flows.
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Abstract. Software installation provides an attractive entry vector for malware:
since installations are performed with administrator privileges, malware can eas-
ily get the enhanced level of access needed to install backdoors, spyware, rootk-
its, or “bot” software, and to hide these installations from users. Previous research
has been focused mainly on securing the execution phase of untrusted software,
while largely ignoring the safety of installations. Even security-enhanced operat-
ing systems such as SELinux and Vista don’t usually impose restrictions during
software installs, expecting the system administrator to “know what she is doing.”
This paper addresses this “gap in armor” by securing software installations. Our
technique can support a diversity of package managers and software installers.
It is based on a framework that simplifies the development and enforcement of
policies that govern safety of installations. We present a simple policy that can be
used to prevent untrusted software from modifying any of the files used by benign
software packages, thus blocking the most common mechanism used by malware
to ensure that it is run automatically after each system reboot. While the scope
of our technique is limited to the installation phase, it can be easily combined
with approaches for secure execution, e.g., by ensuring that all future runs of an
untrusted package will take place within an administrator-specified sandbox. Our
experimental evaluation has considered over one hundred benign and untrusted
software packages. Our technique was able to block malicious packages among
these without breaking non-malicious ones.

Keywords: Untrusted code, Malicious code, Software installation, Sandboxing.

1 Introduction

Malware, including adware, spyware, rootkits, backdoors, trojans, and bot software,
has become a major security concern on desktop systems over the past few years. Al-
though it was common in the past for software to be executed automatically when users
click on attachments or hyperlinks, this practice is no longer that common: execution of
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untrusted software1 typically requires explicit user consent, or an exploit on web
browser or email handler2.

Software installation provides a more attractive entry vector for malware than com-
peting alternatives such as remote exploits since installations are usually carried out
with highest (administrative level) privileges, thereby providing malware the level of ac-
cess it needs to embed itself deeply and firmly into the system, and to hide its
presence from system monitoring utilities. In contrast, programs targeted by exploits
(including those embedded in e-mail attachments or browser links) may run with user-
level privileges, making it harder for malware to embed itself into the system. Further-
more, security-conscious users can deploy defenses against remote exploits (by using
firewalls, buffer overflow defenses such as address-space randomization, etc.) and mali-
cious e-mail attachments and other implicitly downloaded programs (by automatically
sandboxing them). In contrast, few defenses are available to secure software installa-
tions. Even secure operating systems such as SELinux don’t usually impose restric-
tions during software installs, expecting the system administrator to “know what she
is doing.” Unfortunately, even the most sophisticated users typically do not understand
what goes on when complex software packages are installed. Often, these packages run
scripts or other programs with administrative privileges, with the user having no knowl-
edge of these activities. Software installations thus provide an ideal vehicle for malware
to surreptitiously inject itself into a host system.

In spite of the threats posed by the installation phase, previous research on untrusted
software security [17,4,27,31,22,37,33] has been focused primarily on their execution
phase. Relatively little work has been done on securing the installation phase. This
paper seeks to address this overlooked problem, and develops a solution that works well
with existing techniques for securing the execution phase. Specifically, our technique
achieves the following goals that we consider essential for secure software installation:

– Untrusted software should not interfere with the operation of benign packages. So-
phisticated spyware and rootkits can hide themselves in such a way that trusted com-
ponents in the system end up executing their malicious payload. Since trusted system
components aren’t typically sandboxed or carefully monitored, this makes it easier
for malware to execute without being noticed.

– Untrusted software should not be allowed to execute outside a user-specified sand-
box or virtualization environment. Some malware may cause damage during instal-
lation, but others may cause damage when they are run. To guard against the latter,
our approach can install untrusted code in a manner that it cannot be run outside a
sandbox (or a virtualization environment).

– Untrusted software should be (securely) uninstallable at any time. Malware may
install itself in such a way that uninstallation won’t work properly. For instance, they
may use scripts to copy files that are unspecified in the package; these files won’t be
removed during uninstallation.

1 We use the term “untrusted software” to refer to software obtained from untrusted sources on
the Internet. Untrusted software may be malicious or non-malicious. On the other hand, benign
software, which is obtained from trusted sources, is assumed to be non-malicious.

2 This observation is supported by a white-paper from Symantec [11], which indicates that most
adware and spyware enter desktop systems via an explicit software installation step.
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Our technique does not make many assumptions about what constitutes a software
installation — it may involve running a software package manager such as RedHat’s
rpm, Debian’s dpkg, running a self-installing executable, installation from a tarball,
etc. It may also involve running higher-level GUI-based installers that in turn invoke
these lower level installation mechanisms. Our key observation is that once there is
an explicit user consent involved, at that point, we can “wrap” the command that is
executed for installation so that it runs within our Secure Software Installer (SSI).

The rest of this paper is organized as follows. Section 2 describes our threat model.
Section 3 presents an overview of our approach and describes the high level design
of Secure Software Installer (SSI). Section 4 describes the installation policies imple-
mented in SSI. Section 5 presents an experimental evaluation of SSI. Related work is
discussed in Section 6, followed by concluding remarks in Section 7.

2 Threat Model and Defense Overview

Our approach is based on the availability of mechanisms to distinguish between benign
and untrusted software. For instance, all software that is digitally signed by a trusted
vendor may be classified as benign, while the rest may be deemed untrusted.

We divide the threats posed by untrusted software into three phases: installation
phase, execution phase, and uninstallation phase. A variety of solutions are available
for securing the execution phase, including runtime policy enforcement (also known
as sandboxing) [27,23,17,31,6,4,25,12], isolated execution [22,32,37], and file-label-
based integrity protection [33,28]. Therefore, this paper is concerned only with the
installation and uninstallation phases. Nevertheless, to demonstrate the end-to-end fea-
sibility of our approach, our implementation includes a defense for the execution phase.

Software installation (and uninstallation) requires a higher level of privilege and ac-
cess than the execution phase. This makes it difficult to define policies that ensure se-
curity objectives without breaking installations. The central contribution of this paper
is that of developing policies and enforcement techniques to overcome this challenge.

2.1 Install-Time Threats

We assume that the goal of malware is to execute some or all of its code while being
free of the above-mentioned confinement mechanisms that are to be employed during
the execution phase of untrusted software. Before enumerating possible ways in which
this goal can be achieved, it is helpful to have an understanding of the main features of
modern software package managers. The specific details given here pertain to RedHat
Package Manager (RPM), although the description is applicable (with minor changes)
to other package managers such as Debian’s dpkg.

An RPM package contains a dozen or more components, most of which are descrip-
tive in nature, e.g., name, version, vendor, copyright, URL, etc. There are five compo-
nents that are security-relevant:

– Files contained in the package, i.e., the files copied by RPM during installation.
– Scripts. A package may contain several shell scripts that are run at various stages

of installation such as before building a source package, before installation, after
installation, etc. RPM runs these scripts at the specified stage.
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– Requires. This tag specifies dependencies that a package may have. A package may
depend on one or more packages. Rather than specifying these dependencies using
package names, RPM and Debian permit the use of arbitrary strings. A package that
has a dependency s will be installed only if there is already another package installed
on the system that “provides” s. The use of arbitrary strings for dependencies allows
for multiple implementations of the same functionality.

– Provides. The functionality provided by a package. It will be matched against the
“requires” field as described above.

– Conflicts. If a package conflicts with one or more packages, those are listed in this
section. A new package that conflicts with an existing package will not be installed.

Based on the above description, the following attack avenues are possible that may
let untrusted code to escape confinement:

1. Attacks that perform malicious actions at install time. RPM does not pose any re-
strictions on the scripts contained in a package. Thus, in the absence of additional
protection, arbitrary attacks on the host are possible. SSI performs the installation
within a virtual environment, so that these attacks would be isolated from the host.

The only way in which the host environment is affected in SSI is due to copying
of files modified during the installation — these files are copied out of the virtual
environment onto the host. Hence the rest of the discussion below is concerned with
how files may be used to achieve the goals of malicious code.

2. Attacks that modify files used by benign packages. By modifying these files, a ma-
licious package may be able to inject its code into the execution flow of a benign
application. Since benign applications are not constrained in any way, such an at-
tack would allow malicious packages to escape confinement. There are two cases to
consider here:
– Existing benign packages. A malicious package may claim to contain a library or

executable that is already used by an existing benign application. As a result, these
files may be overwritten when the package is installed, and hence future runs of
this benign application may end up executing code that belongs to an untrusted
package. It is also conceivable that an attack based on modifying a non-code file
(e.g., configuration file used by a benign application) may subvert the operation of
a benign application and cause it to execute the code of an untrusted package. SSI
prevents these attacks by restricting untrusted packages from modifying (or delet-
ing) any existing file other than those previously installed by an untrusted package.

– Benign packages installed in the future. Instead of targeting an existing benign ap-
plication, a malicious package may target a package that is likely to be installed in
the future. Alternatively, it may claim to provide (in the sense of “provides” fea-
ture described above) a functionality needed by a future benign package. In these
cases, SSI would permit the initial installation of these files belonging to the un-
trusted application. However, at the time of installation of the benign package, SSI
will detect that a benign package depends on an untrusted package, or contains
files belonging to an untrusted package. In either case, SSI disallows installation
and notifies the user so that he/she can uninstall the untrusted package before at-
tempting to install the benign package (possibly after installing additional benign
packages that satisfy the dependencies of the current benign package).
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The above discussion assumes that package dependency information is complete.
However, it is possible that some optional libraries or configuration files may be
omitted in the package specification. Worse, for software installed from tarballs, no
dependency information is available. SSI employs a second line of defense to prevent
untrusted libraries and executables from being directly used by benign applications.
It installs libraries in separate directories that are included in the search path used
by the dynamic loader for untrusted applications, but not for benign applications3.
Untrusted executables are installed in such a way that when they are invoked, they
are run within a confinement environment.

While our approach copes with missing dependencies on library or executable
files, it does not currently implement a complete defense against missing configura-
tion file dependencies. This is partly because we considered it a low-risk, and partly
because the threat could be eliminated in the isolation-based execution confinement
mechanism used in our implementation. However, as described in Section 5.1, our
experiments suggest that a more general solution would be based on restricting the
data files written by untrusted applications.

3. Attacks contained in the files belonging to an untrusted package. As described above,
SSI ensures that all executables belonging to the untrusted code are “wrapped” in
such a manner that when they are invoked, they would automatically be started up
within a sandbox or virtual environment.

4. Attacks on integrity of package database. Package managers typically use a few files
to maintain a database of packages installed on the system. Since many of the poli-
cies described above were based on the content of this database, these policies can
be undermined by attacks that compromise the integrity of the database. To preclude
these attacks, SSI verifies that the database changes resulting from the installation
of an untrusted package concern that package only, and do not modify (or insert)
information about other packages.

Our discussion in this paper is focused primarily on integrity threats, and does not
consider denial-of-service threats4.

2.2 Uninstall-Time Threats

Software uninstallation is carried out with the same level of privileges as the installation
phase. Contemporary package managers run scripts provided by the package. Thus, the
threat model parallels that of the installation phase. Specifically, it consists of:

1. Attacks that perform malicious actions during uninstallation. These remain the same
as during installation, and are addressed in the same way.

3 On Linux, this is done by including these directories in the LD LIBRARY PATH environ-
ment variable before running an untrusted application, and not including them for benign
applications.

4 This is why “conflicts” did not enter the discussion above — a malicious package may claim
to conflict with a large number of packages that are likely to be installed in the future. When
a user attempts to install them, she will get an error message. It is expected that in this case,
and in other cases involving conflicts or failures relating to untrusted packages, the user will
uninstall the untrusted package before proceeding further.
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Fig. 1. Design and operation of SSI

2. Attacks that leave behind files after uninstallation. We do not distinguish in this case
between different types of files, or whether these files relate to benign packages in
any way. Instead, SSI ensures that all files that were installed by an untrusted package
are removed on uninstallation.

3. Attacks that remove files belonging to other packages. SSI enforces a policy that
ensures that only the files copied into the host at installation time can be removed at
uninstall-time.

4. Attacks on the integrity of package database. The attacks discussed in the installation
phase under this category continue to be possible at uninstallation time, and can be
prevented using the same high level policies (i.e., ensuring that the database updates
are consistent with the package removed.)

5. Attacks that cause errors during uninstall. Such attacks are possible if the scripts
related to the package perform actions that lead to an error, which in turn cause the
package manager to abort uninstallation. While errors would cause a rollback during
the installation phase, it is not an option here: we wish to remove the package. Our
approach is to use the “force” option provided by package managers to forcibly
remove the package from the database. (As mentioned above, SSI already ensures
that the files installed by the package are removed.)

3 Approach Overview

Our approach consists of the following phases:

– Initial installation in a virtual environment, where the installation can proceed with-
out violating host integrity or install-time failures. The actions observed during the
installation are logged for further analysis in the policy-checking phase.

– Policy checking to detect if the actions observed during initial installation violated
the requirements captured by an installation policy.

– Commit/abort phase, which propagates the files modified during installation to the
host if no policy violations occurred. Otherwise, installation is aborted, leaving the
host state as if the installation never took place.
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– Secure execution phase, during which untrusted software can be invoked within a
confinement mechanism that is specified at install time.

– Secure uninstallation phase that ensures that untrusted software can be uninstalled
safely at any time.

These phases (and their rationale) are described in more detail below. Figure 1 shows
the components of SSI involved in the installation as well as the uninstallation phase.

3.1 Initial Installation Phase

There are two basic options for protection against attacks during the installation phase.
First, the installation could be performed within a sandbox that prohibits the execution
of any action that has the potential to compromise host security. Unfortunately, such
an eager enforcement approach is likely to fail: software installation typically requires
writing to system directories, and updating databases that record the software installed
on the system. Denying these actions will lead most installations to fail, while permit-
ting them has the potential to damage system integrity. In particular, there is no easy
way to determine whether an individual database update is safe or not: it is the end re-
sult achieved by a series of updates that can be determined to be “safe” or “unsafe.” For
this reason, SSI determines safety by first performing the installation within a virtual
environment, and examining post-installation system state for verifying safety policies.
As we describe later, such state-based policies provide a novel capability that is crucial
for expressing and enforcing the safety requirements for securing software installations.

We rely on our Safe Execution Environment (SEE) [32] for initial installation. SEEs
offer several benefits over the alternative of using virtual machines for this purpose.
Chief among them is that of accurate environment reproduction: SEEs are based on
one-way isolation, which makes the host state visible inside the SEE. In other words,
they provide an initial environment that is exactly the same as the host environment.
As such, software installations, which have a number of host dependencies (including
those based on previously installed software, their releases and patch versions, and so
on) can be successfully installed within the SEE if they can be installed on the host OS.
In contrast, virtual machines require significant additional effort for exact duplication
of the host environment.

The second important reason for using SEE is that they offer the ability to commit the
results of installation onto the host environment. If we relied on virtual machines, there
is typically no easy way to migrate the changes made within the VM to the host OS. The
obvious approach of rerunning the installation on the host OS after policy verification
can turn out to be dangerous: a malicious software package may detect that it is being
run within a VM the first time, and may not exhibit malicious behavior. For this reason,
our installation policy may hold for the installation within the VM. However, when the
installation is rerun on the host, malicious software can detect that it is no longer within
a VM, and exhibit malicious behavior that violates our policy. In contrast, with the SEE,
the behavior verified against a safety policy is the same one that gets committed to the
host, thus ensuring that installation policies cannot be violated.

Our approach can support software installation using means other than package man-
agers, e.g., tarballs and and self-installing executables. This is because our approach has
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no direct dependency on the tools used for installation — they are simply run inside the
SEE, and the resource accesses are observed, and policies enforced on their basis.

SSI uses the Alcatraz tool [22,5] for realizing an SEE. Alcatraz uses copy-on-write
to handle file operations, i.e., any host files modified within the SEE are copied into
the SEE and modified. The modifications are not visible to host processes unless they
are also running within the same SEE. Modifications involving other resources (e.g.,
mounting files, arbitrary communication with processes outside SEE) are controlled by
a policy that forbids most accesses that have the potential to harm host security. More
details on SEE implementation (including the containment policies used) can be found
in [22,32]. For SSI, we made a few modifications to Alcatraz: (a) replacement of manual
determination of safety with an automated policy enforcement mechanism, (b) support
for the Secure File Container feature described later, and (c) selective relaxation of
restrictions on non-file resource accesses within Alcatraz so that software installers can
download software from the Internet.

3.2 Policy Checking Phase

Previous work on SEE relied on a manual approach for determining the safety of the
actions performed by untrusted software. Unfortunately, such a manual approach is
cumbersome and error-prone. We have therefore developed an automated approach for
determining the safety of software installations. Safety is defined by a policy, which is
derived from the high-level description provided in Section 2. An important innovation
in our approach is the development and use of state-based policies that can refer to the
operations performed during installation, as well as the actual end result of installation.
Such state-based policies are strictly more powerful than the class of policies that are
enforceable using runtime monitoring [29], where decisions regarding permissibility
of an operation need to be made without knowing about future operations made by a
program. For instance, an installation program may need to add a new userid to the
password file, and may do this by creating a copy of the password file, editing it to add
a user, removing the original password file and then renaming the copy. A runtime mon-
itoring approach would have to prevent the removal step of the password file, whereas
a state-based policy can check that the end result of the program is acceptable: specifi-
cally, the difference between the initial and final password file is the addition of a line
that corresponds to the new user, respecting other criteria such as the use of previously
unused user and groupids, and a permitted shell.

A second innovation in our policies is that of action attribution: instead of requir-
ing policies to be specified entirely in terms of low-level operations (or state changes),
our policy framework allows these low-level operations to be mapped to higher-level
operations, and the specification of policies in terms of these operations. Taking the
userid addition example again, rather than stating a policy that relies on computing file
differences between the original and modified password files and verifying certain char-
acteristics of these differences, we can instead correlate the changes to the execution of
a program useradd: in this case, the policy can be simpler, stating that the execution of
useradd command with certain arguments is permitted.

Different policies can be associated with different installations — our policy frame-
work provides flexibility in this regard. However, in practice, we expect a small number
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of policies to be sufficient. One policy would concern benign packages, while a small set
of policies may be specified for untrusted packages. (Our implementation uses a single
policy for all untrusted applications, although this will need to be changed if we wish
to support untrusted applications that require a higher level of access, e.g., servers that
get started automatically after reboot.) The specific policies used in our implementation
are described in Section 4.

Package Database. The policy checker makes policy decisions by querying a database,
which consists of two components:

– Package management database. It is used by an existing package manager such as
RPM or Debian to store information about the contents and dependency of all the
installed packages.

– SSI-database. It is used to maintain package names, trust labels, and information
about software installed outside of a package manager, such as tarballs and self-
installing executables.

SSI currently supports RPM database, but its dependence on the details of the
database is minimal. The implementation needs to be able to query RPM about the
packages installed on the system, and their dependencies. For this reason, SSI can be
easily ported to other package managers such as Debian. Moreover, SSI has no de-
pendency on the higher level tools used during installation, e.g., Gnorpm or Synaptic
package manager. These tools are simply run inside the SEE, and the safety policies
checked against the resulting system state and the actions observed within the SEE.

3.3 Commit/Abort Phase

If the policy checker reports success, then the results of installation are committed. Oth-
erwise, the entire SEE is discarded, which ensures that the host OS state is unchanged
by the installation phase. The commit/abort phase is provided by SEE: we made one
change, as described below, to ensure that untrusted software would always execute
within a user-specified sandbox.

3.4 Secure Execution of Installed Software

An untrusted application may not violate any install-time policy, but may still exhibit
malicious behavior when it is run. For instance, a game program may also act as a
“bot,” polling an attacker-specified network address for malicious actions to carry out.
Or, it may communicate with benign processes and may attempt to compromise them.
For these reasons, it is important that the untrusted code be monitored at runtime, and
its actions confined to ensure that it cannot compromise system security. We consider
three options in this regard: sandboxing, isolated execution, and OS-based integrity
protection.

Sandboxing. A number of sandboxing and policy confinement techniques have been
developed [27,23,17,31,6,4,25,12], and may be used with SSI. SSI relies on a simple
technique to ensure sandboxing of untrusted executables: while copying an executable
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from the SEE to the host OS, it is renamed, and the execution permission is removed. Li-
braries used by untrusted applications are stored in non-standard directories to minimize
the likelihood that they could be accidentally used by benign applications. A wrapper
script is created with the original name of the executable, which is then responsible for
properly setting up the search path used by the dynamic loader, and executing the orig-
inal executable within the sandbox. Note that this simple approach can be defeated by
the user, but this is not our concern since we assume that the user is cooperative, i.e.,
the user will not actively subvert SSI.

Development of suitable sandboxing policies is a research problem in itself, and
is not the focus of this paper. We simply observe that sandboxing policies are rela-
tively easy to develop for some classes of untrusted code that are most commonly used,
namely, document viewers and media players, as they require minimal access to OS
resources.

Isolation. Instead of using a sandbox, the execution phase may rely on an isolation-
based approach. This is the easiest option in our implementation since we are already
using an isolation based technique in SSI. To ensure isolated execution of untrusted
code, we modified Alcatraz so that it commits the results of untrusted installations to a
separate section of the filesystem called a Secure File Container (SFC). The use of SFC
ensures that none of the files (libraries, executables, or configuration files) contained
in the untrusted software package can be accidentally used by benign applications. We
use the same technique as with the sandboxing approach for invoking untrusted exe-
cutables: a wrapper script is created with the original name of such executables. This
wrapper script starts Alcatraz, initializes it with the environment within the SFC, and
starts execution of the original executable.

As in the case of sandboxing, there remain some usability issues with isolation-based
techniques — this is a topic of ongoing research in safe execution of untrusted software.
As advances are made in this area, they can be seamlessly integrated with our approach
focused on secure installations.

Information-Flow Based Integrity Protection. SSI will work seamlessly with
information-flow based integrity techniques for Linux [33,28,21]. Indeed, SSI has been
developed so that, together with the PPI integrity technique described in [33], it can
provide a comprehensive defense against malware. In particular, SSI can simply label
the files belonging to untrusted application with low integrity, while files belonging
to benign packages are labelled with high integrity. Since PPI ensures that information
cannot flow from low-integrity sources to high-integrity sinks, it makes sure that benign
processes and the files used by them won’t be corrupted by untrusted applications.

3.5 Secure Uninstallation Phase

Secure uninstallation is supported for untrusted packages. If a package A is to be unin-
stalled, we go ahead and uninstall all other packages that depend on A. Since our poli-
cies do not permit benign packages to depend on untrusted packages, uninstallation of
untrusted packages can always be performed without breaking benign packages.
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The threats relating to uninstallation phase and the approach for mitigating them
were already discussed in Section 2, while the specifics of our policy are described in
Section 4.2.

Within SSI, uninstallation first runs the normal package uninstallation process (e.g.,
rpm -e). It then determines if the actions performed during the uninstallation are per-
mitted by the uninstallation policy specified in Section 4.2. Otherwise, SSI forces the
package manager to remove the package from its database (without actual uninstalla-
tion), and then deletes all the files installed by the untrusted package.

4 Installation Policies

4.1 Policy Framework

One of the main difficulties with policy-based approaches is the difficulty of policy
development. Sandboxing policies can routinely get quite large and complex since (a)
they are stated in terms of low-level primitives (which files can be accessed and which
ones can’t be), and (b) there are a large number of files on the system, and it is time-
consuming (and error-prone) to identify all files that an application should be permitted
to access. Moreover, a different policy is needed for each application, as the set of
allowable and/or required resource accesses differ for different applications.

We observed that the principal reason for policy complexity is the large gap between
high-level policy objectives such as those stated in the Introduction, and the low-level
policies that can actually be enforced, which deal with specific resources that can be
accessed, and the operations that are permissible. To combat this problem, we developed
an approach that enables automated generation of lower-level policies from higher level
policies. The specific techniques and mechanisms used to support higher level policies
are described below.

Deriving low-level, enforceable policies from software package dependencies. We
leverage the contents of software packages to ensure that untrusted packages cannot
modify or corrupt files used by benign packages. Specifically, the following pieces of
information can be obtained from a software package: (a) the files contained in the
package, and (b) the names of other packages that this package depends on. The second
type of information is readily available for RPM or Debian packages, but not for tarballs
or self-installing executables. This has not been a serious problem in practice since
we need (b) only for benign packages, which are typically from an OS distribution
vendor that uses a package manager such as RPM or Debian. However, if it becomes
necessary to install a benign package that arrives in the form of a tarball, the following
work-around could be used to obtain an approximation for dependency information.
In particular, the application can be executed within a virtual environment (e.g., our
SEE) and its file accesses observed. The application then has a dependency on all the
packages that contain one or more of the files accessed by the application. We note that
the list obtained in this way may not be complete, but is clearly an improvement over
the alternative of assuming no dependencies. Moreover, as described in Section 2, our
approach incorporates a second line of defense to guard against attacks that may be
possible due to incomplete dependence information.
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To use the above procedure, benign packages need to be identified. We expect this
information to remain the same across a given OS version, although it is conceivable
that individual users5 may have some differences in terms of the sources they are willing
to trust. Such differences may be captured by appropriately modifying a configuration
file that specifies this information.

In our implementation, where RPM is the default package manager, we query the
installed packages on the system, and based on the signature of the RPM package, a
trust label is assigned and recorded in the SSI-database. We verify that installed benign
packages only depend on other benign packages. (If this is not true, there is an incon-
sistency, and user input is needed to resolve it.) For packages that are installed outside
of the package manager, their contents (and optionally, dependencies) are maintained
in the SSI-database.

State-based policies. Another important reason for the complexity of typical sandbox-
ing policies is due to the need to ensure that each permitted action leaves the system in
a safe state. This requires explicit consideration of all possible operations that can be
performed by an application, and their possible operands, and identification of those op-
eration/operand combinations that are safe. Since there can be many ways for an attack
to achieve the same objective, the size (and complexity) of policies can correspond-
ingly increase. Moreover, as illustrated using the user addition example earlier, some
sequence of operations may first take the system to an unsafe state before bringing it
back to a safe state.

For the reasons mentioned above, SSI uses state-based policies that can reference (a)
the final state of the system, (b) the initial state of the system, and (c) the sequence of
operations that took the system from the initial to the final state. This enables powerful
policies to be specified, e.g., we can capture any sequence of operations that allow “a
file f to be updated to an f ′ such that f and f ′ differ in at most k lines, and all these
lines match a regular expression R.”

The power offered by our post-execution analysis framework has steered us towards
an extensible approach for verifying state-based policies, where new policy primitives
could be defined by essentially writing scripts that operate on the state within the SEE,
and return true or false indicating whether the policy was satisfied. We have chosen
this alternative for expediency, as opposed to defining a special-purpose policy language.

Providing safe exceptions using action attribution. Sometimes, the installation of a
package may require modifications to some files whose integrity is critical. For instance,
/etc/ld.so.cache file needs to be updated after installing new shared libraries. Sim-
ilarly, some packages may need to create new users. Arbitrary changes to files such as
/etc/ld.so.cache and /etc/passwd will harm the system, so SSI needs to provide
mechanisms to perform controlled updates to these files that ensure safety.

One approach for permitting safe changes was described in the previous paragraph:
by comparing modifications to the file, and defining safety criteria for these modifica-
tions. However, an alternative approach may be preferable in some cases. This approach

5 Our intent is that the “user” is a system administrator — e.g., an OS distribution vendor
may provide the list of benign and untrusted packages, or they may be maintained by user
communities.
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Fig. 2. Behavior of Apache Installation

exploits the fact that often, the system already provides utilities for safely updating
certain critical pieces of information. Examples include the ldconfig program to up-
date the ld.so.cache file, useradd and groupadd programs to create new users or
groups, and chkconfig program to enable or disable automatic startup of a specified
service.

Based on the above observation, our approach allows specification of policies that
permit execution of such utility programs, with constraints on argument values. Such
an approach avoids the need for writing policies that need to “understand” the format
of configuration files. For instance, instead of describing the format of a “safe” entry
in /etc/passwd, we can state that it is safe to call the useradd program with certain
parameters, e.g., with a userid other than 0, and not belonging to any existing group.

Policies in terms of higher-level actions such as useradd are supported by the policy
checker as follows. First, a raw log of operations performed within SEE is obtained. The
policy checker analyzes this log to derive parent-child relationships between processes,
the programs executed by each process, and the resource accesses made by them. This
information can be represented using a tree structure shown in Figure 2. In this tree, the
internal nodes represent processes, while the leaves represent modification operations.
The program corresponding to the root process of this tree is rpm, as we used rpm from
the command-line in this example.

If the policy states that useradd can be used with certain restrictions on parame-
ters, the policy checker first verifies if the invocation of this program in the SEE log
conforms to these restrictions. It also makes sure that the program did not interact with
any untrusted components, other than being invoked from an untrusted script with the
arguments as permitted by the policy. If these checks succeed, all operations in the log
that can be attributed to useradd or one of its children are deleted. Policies regarding
resource accesses are checked after this step.

The power of the attribution mechanism is easier to illustrate in the context of more
complex software packages. For this reason, Figure 2 shows the attribution tree for
Apache. The scripts of this packages are executed in child processes of the rpm process.
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The pre-installation script is executed first, adding a user account though the useradd
command. Then rpm copies the contents of the package into their destination. Finally, a
post-installation script uses chkconfig to start up Apache automatically at boot time,
and then updates /etc/mime.types file.

4.2 Policy for Installing Untrusted Packages

Our installation policy consists of the following components. These components corre-
spond directly to the threat model described in Section 2. We also describe the enforce-
ment of these policies based on the mechanisms and techniques described above.

We remark that the policy described below is exactly the same as the one used in our
evaluation.

1. Attacks that perform malicious actions at install time. These are prevented by poli-
cies that are already enforced by SEE, which confine non-file accesses made within
SEE. We made two modifications to the default policy: the installer application is
permitted to access the network, so that it can download packages from the Internet
if needed. We also make an exception for communication with the X-server. (Al-
ternatively, untrusted applications may be directed to a nested X-server using the
Xnest [3]. This option ensures that the primary X-server is not compromised by un-
trusted code.)

2. Attacks that modify files used by benign packages.
– Files that an existing benign package depends on. SSI ensures that an untrusted

package does not modify or delete any existing file, except possibly those in-
stalled by an untrusted package.

– Files that a future benign package depends on. As mentioned earlier, this is pre-
vented by enforcing a policy that restricts benign packages from (a) having depen-
dencies on untrusted packages, and (b) containing files that belong to untrusted
packages. The contents of the package manager database and SSI database are
used to compute the complete list of files that are within a package, as well as the
complete list of files that it depends on.

– Files used by a benign package without specifying dependency. Since we do not
know that such a file would be used by an existing or future package, no install-
time policy can be specified to preclude this. Instead, this possibility is avoided
at the time of execution of benign software. The exact mechanisms differ, de-
pending upon the technique used during execution phase, and were described in
Section 3.4.

3. Attacks contained in files belonging to untrusted package. These attacks are con-
tained using a confinement mechanism during the execution of untrusted software.
The choices for doing this were described in Section 3.4.

4. Attacks on integrity of package database. We enforce a policy that ensures that the
changes to the package database are consistent with the files actually copied into the
system. In particular, (a) the package contents should include all and only the files
that were reported as having been created or modified within the SEE, and (b) any
files that were reported as having been deleted within the SEE must be part of the
package. Moreover, information regarding all other packages in the database should
remain unchanged.
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5. Granting exceptions based on attribution. Updates to the file /etc/ld.so.cache
using ldconfig are always permitted. Addition of a new MIME type in the file
/etc/mime.types is permitted as long as it conforms to the state-based policy
described before. These exceptions are recorded in SSI database so that their inverse
operations can be permitted during uninstallation.

4.3 Policy for Uninstallation of Untrusted Packages

The uninstallation policy follows the outline specified in Section 2.

1. Attacks that perform malicious actions during uninstallation. These remain the same
as during installation.

2. Attacks that leave behind files after uninstallation. The contents of the package
database are queried to obtain the list of files installed by an untrusted package.
If all these files are not removed during uninstallation, they are forcibly removed.

3. Attacks that remove files belonging to other packages. Once again, the contents of
the package database are queried for the list of files installed by the untrusted appli-
cation. Only these files are permitted to be deleted at commit time.

4. Attacks on the integrity of package database. These are thwarted by checking that
the only change to the database is the removal of the untrusted package, and that
none of the information relating to other packages have been changed.

5. Attacks that cause errors during uninstall. These attacks are handled as described in
Section 3.5.

6. If SSI database indicates that exceptions were granted, operations that have the in-
verse effect are permitted.

Currently, there is no general way to identify how to “invert” an operation. Instead, we
manually specify how to invert an operation on a case-by-case basis. For instance, for
an operation that adds a MIME type, we specify that inverse operation has the effect of
deleting the added MIME type.

4.4 Installation Policy for Benign Packages

The only policy enforced is that benign packages should not depend on untrusted pack-
ages. No policies are enforced during uninstallation of benign packages.

5 Evaluation

We have implemented SSI on RedHat Linux (CentOS 4.1). Our implementation uses
a publicly available tool Alcatraz [5] as the SEE. The implementation of the policy
checker and the user interface consists of 7K lines of Java code. In this section, we
present an evaluation of the functionality and performance of this implementation.

5.1 Evaluation of Functionality

The goal of this section is to evaluate the utility of SSI in securing real-world soft-
ware packages. In this regard, we considered four cases: (a) installation of malicious
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packages, (b) installation of nonmalicious untrusted packages, (c) installation of be-
nign packages, and (d) secure uninstallation. Of these, (a) and (b) use the policies de-
scribed in Sections 4.2, (c) uses policies from Section 4.4, while (d) uses policies from
Section 4.3.

Real-world packages don’t embody all aspects of malicious behavior considered in
Section 2. As a result, they do not stress our policies. In other words, confidence in the
security provided by our approach is more a function of the completeness of the threat
model and the soundness of the policies described earlier rather than the experimental
evaluation. However, our experiments on nonmalicious and benign software involved a
much larger number of packages, so they do demonstrate that our policies do not lead
to false positives for typical untrusted packages.

Installation of Malicious Packages

Ideally, SSI would be evaluated by experimenting with a large collection of malware
samples. Unfortunately, such an evaluation is not feasible on our chosen platform
(Linux) since malware is relatively uncommon on Linux. What we have been able to do
is to evaluate SSI using rootkits that are available from [1] — these were the only mal-
ware collection that we were able to obtain. In addition, since these rootkits are easily
detected by our technique, we developed two additional test cases that embody a more
sophisticated attack strategy.

More generally, we observe that most malware is designed so that it runs in the
background, and is started up automatically at boot time. This requires modification
of startup files, e.g., files within /etc/init.d/ on Linux. Since these files belong to
benign packages, SSI will likely detect such attempts and abort the installation of such
packages.

– Disguised rootkit. In this experiment, we downloaded all the rootkits that were avail-
able from [1]. There were a total of 10, of which 8 were applicable to Linux. Of these
8, four (mood-nt, adore-ng, suckitdid and cd00r) expect users to knowingly
run them each time, and hence are not persistent. Our tool is not designed to prevent
a knowledgeable user from knowingly running malware, but is rather aimed at mal-
ware that is installed surreptitiously. We were then left with four rootkits: bobkit,
tuxkit, lrk5 and portacelo. During installation, all these rootkits modified files
belonging to benign packages, such as ls, find, du, ps and init. The installation
analysis determined that these actions are in conflict with the security policy that
only untrusted files can be overwritten by untrusted packages. Hence the installation
was aborted cleanly.

– Fake patch from Redhat. We tried to install the patch for fileutils that was suggested
in the phish email from Redhat [24]. This fake patch was stopped by SSI, as the
installation policy identified that the patch tried to create a privileged user with no
password. On seeing this violation, the installation was aborted.

– “Malicious” rpm package. The Fedora package build system [16] suggests three
possible attack scenarios from the malicious package writer. Of these, a malicious
rpm-scriptlet is a serious threat. To test the effectiveness of SSI under this threat,
we crafted a “malicious” rpm package. This package is named glibsys in RPM
format. During the installation phase, the package tried to overwrite system files
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/lib/libc.so and /bin/gcc. By running the installation inside SSI, the policy
checker captured these unsafe behaviors and aborted the installation.

Installation of Nonmalicious Packages from Untrusted Sources

For this test, we installed untrusted (but nonmalicious) packages from sources that
might be considered untrustworthy, such as freshrpms and ATrpms. We report our ex-
periences in installing and using these packages with SSI. In particular, we downloaded
335 packages from Atrpms and 152 packages from freshrpms. Only 144 of these 487
packages could be installed on our system even in the absence of SSI — this was be-
cause of dependencies that were not satisifed. Of these 144, 11 were server applications
that required a higher level of trust, so we were left with 133 packages in all. Below are
some examples of these applications.

– Multimedia and Document Viewers: gthumb, graphviz, ggv, xmms and xpdf.
– Games, Web Agents, IM: gnapster, ltris, xifrac, ymessenger and gaim.
– Archive Creation and Related Utilities: jpeg2ps, f2c, flac, unrar and pdfmerge.
– File Organization and Album Creation: hardlink++ and mkpp.
– Editors: bluefish, glabels, screem and gedit.

All of these 133 packages could be installed successfully without any problems
within SSI. Thus, there were no false positives due to SSI in this experiment. Although
we currently do not restrict the data files (e.g., configuration or documentation files) be-
longing to untrusted applications, we observed that we could do so fairly easily. In par-
ticular, we noticed that all these files had the name of the untrusted package, and were
created within certain directories such as /usr/share/doc and /usr/share/info/-
nasm.info.gz. There were about half-a-dozen such locations. Based on this observa-
tion, we plan to constrain data files written.

Installation of Benign Packages

For this evaluation, we chose a set of 38 rpm packages from the official repository,
and tried to install them within SSI. It turned out that 37 of them were installed suc-
cessfully, and one of them (ethereal) complained that it was dependent on package
libnetwhich was untrusted. On seeing this, we replaced the untrusted version of libnet
with a benign version obtained from the official repository and repeated the installation
process. During this second attempt, ethereal was installed without problems.

Secure Uninstallation

We did not find any package that comes with malicious uninstallation scripts, so we
hand-crafted some test cases to evalute the ability to perform secure uninstallation. In
particular, we crafted a package which tried to delete /etc/passwd in its uninstallation
script. This action was captured by SSI and it was a violation of the policy specified in
Section 4.2. Therefore, this action was aborted, and SSI verified that the set of files
installed were actually removed from the file system.

We then tried to uninstall the nonmalicious packages installed before. We randomly
chose 10 of them and ran uninstallation operation within SSI, it turned out all of them
were successfully uninstalled without any violations to the uninstallation policy.
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Table 1. Performance overhead of SSI. All numbers are in seconds.

Original Installation SSI Installation
Time Time Overhead

Mozilla installer (binary) 3.285 4.127 26%
Gnuchess (tar ball) 15.868 18.98 20%

Yahoo! Messenger (rpm) 2.433 4.813 98%

5.2 Performance Evaluation

The result of performance evaluation is summarized in Table 1. We evaluated SSI us-
ing three types of installation packages: binary installer, tar ball distribution, and rpm
distribution. Mozilla installer is a self-contained binary, and it performed 8716 file mod-
ifications using 6 child processes. It incurred an overhead of 26%. The installation of
gnuchess package (tgz format) had a 20% overhead, and its operation included three
steps: configure, make, and make install. The entire procedure involved creation
of 1935 new processes and 5325 modification operations on the file system. Finally, the
installation of Yahoo messenger (rpm package) forked 6 child process and involved over-
all 42650 modification operations on the file system, and it incurred a 98% overhead.
The average overhead across these three packages is about 50%, which is moderate but
we believe to be acceptable in the context of SSI. Moreover, the primary performance
bottleneck is the Alcatraz tool that provides our SEE. It uses ptrace-based system call
interception, which frequently introduces 100% overheads on programs.

To estimate the performance benefits achievable using a more efficient system call
interposition mechanism, we made an enhancement to Alcatraz that uses in-kernel sys-
tem call interception mechanism for operations that don’t require processing by Alca-
traz, e.g., read and write operations. With this modification, overheads due to context
switches are decreased to about a third of the figures reported above. For instance, the
overhead for installing Yahoo messenger rpm becomes 38% as compared to 98% which
we observed using original Alcatraz.

6 Related Work

Software Installation. A number of recent research efforts have focused on the prob-
lem of software installation, but they are mainly concerned with handling dependencies
and conflicts among packages.

Checkinstall [15] is a tool to build installation packages such as RPM from an instal-
lation script. Nix [14] presents a comprehensive solution for deploying software, but its
focus is on functionality rather than security.

RPMShield [34] is a tool aimed at securing the process of software installation. It
uses policies based on the notion of ownership of files by packages. A file is said to
be owned by a package if it is part of that package. However, it does not address the
problem of dependencies between benign and untrusted packages, nor does it satisfy
any of the goals for secure software installation that we outlined in the Introduction.

SoftwarePot [20] incorporates a secure software circulation model for software de-
ployment. The software to be run is encapsulated with a file system that is transferred
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from the code producer to consumer. The operations from the software are confined
within the “pot.” It can be thought of as a combination of sandbox and software distri-
bution model. But it constrains users into using one single way of software installation
and execution confinement method. As a result, it is not possible to utilize existing
package formats or sandboxing tools and policies with this approach. In contrast, SSI
is compatible with existing software installation methods, and it is flexible in allowing
users to choose different execution confinement tools. More importantly, SoftwarePot
requires policy development efforts to support new software, while SSI uses a single
installation policy for all untrusted applications. For securing untrusted applications
during execution, SSI can leverage confinement policies that may already be available
in widely used sandboxing tools such as systrace.

Virtualization and Isolation Approaches. Virtual Machines (VMs) [35,13,9] provide
a coarse-granularity approach for dealing with untrusted software: such software could
be run inside a virtual machine, while benign software runs on the host OS. FreeBSD
jails [19], Linux VServer [2] and Solaris Zones [26] provide light-weight virtualiza-
tion, where the same OS kernel is shared across the VMs, while still providing strong
isolation between applications running on different VMs.

The main problem with virtualization approaches is that typically, users want to use
untrusted software to operate on their files, and other resources that are part of the host
OS. To derive the same utility within the VM, the host environment has to be duplicated
inside the virtual machine. This is quite time-consuming — for instance, most standard
(and typically benign) packages would have to be installed on both the host OS and
the VM. Moreover, files needed by untrusted applications would need to be explicitly
copied into the VM. As a result of this inconvenience, users frequently end up installing
untrusted software directly on the host OS. Techniques such as Alcatraz [22] and FVM
[37] (and the closely related product called Software Virtualization Solution (SVS) [7])
mitigate the overhead of environment duplication by using one-way isolation, wherein
the host OS files are visible within the isolated environment, but the files written within
the isolated environments aren’t visible on the host OS. However, usability issues still
remain: if users want to make use of the outputs produced by untrusted software, they
have to explicitly copy them back into the host systems.

DTE and Sandboxing. Boebert and Kain proposed Domain and Type Enforcement
(DTE) [10,36]. Subjects (processes) are associated with domains, while objects (e.g.,
files) are associated with types. DTE policies specify which domains can access which
types. They also specify domain transitions (if any) that should take place when a certain
program is executed. Use of DTE to defeat rootkit attacks is described in [8]. SELinux
[23] security is primarily based on DTE policies that have been developed with the goal
of enforcing the principle of least privilege.

A number of so-called “sandboxing” approaches that have been developed to address
untrusted code security [17,12,4,25,30,27] are conceptually similar to DTE. Motivated
by simplicity, many of these systems typically use policies that are based on program
names and file names, eliminating the intermediary notions of types and domains. While
this loses some generality, it seems acceptable in the context of untrusted software.
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All of the above approaches can potentially be used during the resident phase of
untrusted software. However, they do not provide the power or flexibility of SSI during
the installation phase. First, all these techniques are only capable of enforcing safety
properties [29], which require that every operation leaves the system in a “safe” state.
As described in Section 3, software installations typically involve intermediate states
that are not safe. This motivated the development of state-based policies in SSI. Second,
one of the biggest challenges in using DTE and sandboxing techniques is the difficulty
of policy development. In contrast, SSI uses a single high-level policy that is enforced
on all untrusted package installations.

Information-flow based Approaches. There has been a resurgence of interest in infor-
mation-flow based approaches for preserving host integrity. PPI [33] and SLIM [28]
enforce information flow policies that ensure that high integrity objects and subjects are
not compromised by interacting with low-integrity objects and subjects. While policy
development has been a challenge that has impeded deployment of mandatory access
control (MAC), recent efforts such as UMIP [21] and PPI [33] have begun to address
this problem by developing techniques to synthesize MAC policies.

SSI complements the above techniques: while the above techniques can protect host
integrity from the execution of untrusted software, they do not provide a good solution
for the installation phase. However, they do provide a strong foundation for SSI since
they can answer questions regarding the trustworthiness of every file on the system. As
a result, some of the potential gaps in SSI policies that arise due to missing information
in software packages can be avoided.

Back to the Future system [18] uses information flow techniques to detect the pres-
ence of malware. Their approach does not constrain malware during its installation;
instead, it is detected when its files are used by a benign application. Its main advantage
is that it can recognize any attempt by malware to inject itself into inputs consumed by
benign applications. Its drawback is that it allows host integrity to be compromised (as
a result of malware installation), and this change has to be undone when malware is de-
tected. This rollback may cause delays, and moreover, can introduce subtle file system
consistency issues.

7 Conclusion

Software installations provide an attractive avenue for spyware and rootkits to embed
themselves deeply into the operating system. In this paper, we proposed an approach
for securing this entry point by developing a framework that confines accesses made
by untrusted packages during their installation. Our technique can support a diversity
of software installation mechanisms. It can also work with different approaches for
confining untrusted software after the installation phase. A key novelty in our approach
is the development of a high-level policy framework that largely eliminates the need
for developing application specific installation policies. Instead, a single, intuitively
simple high level policy can be used for a wide range of untrusted applications. Our
experimental results demonstrate that our approach is effective, and achieves the goals
set out in the Introduction.
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Abstract. Botnets are large groups of compromised machines (bots)
used bymiscreants for the most illegal activities (e.g., sending spam emails,
denial-of-service attacks, phishing and other web scams). To protect the
identity and to maximise the availability of the core components of their
business, miscreants have recently started to use fast-flux service networks,
large groups of bots acting as front-end proxies to these components. Mo-
tivated by the conviction that prompt detection and monitoring of these
networks is an essential step to contrast the problem posed by botnets, we
have developed FluXOR, a system to detect and monitor fast-flux service
networks. FluXOR monitoring and detection strategies entirely rely on the
analysis of a set of features observable from the point of view of a victim
of the scams perpetrated thorough botnets. We have been using FluXOR
for about a month and so far we have detected 387 fast-flux service net-
works, totally composed by 31998 distinct compromised machines, which
we believe to be associated with 16 botnets.

1 Introduction

A malware is a program written with malicious intents. Today, the main moti-
vation behind malware writing and their use is the easy financial gain. Smart
miscreants write malware and sell them in the wealthy underground market to
other miscreants [1]. These malicious programs are “installed” on machines all
around the world, without any permission of the users, and transform these ma-
chines into bots, i.e., hosts completely under to control of the attackers. Bots
are then used to steal computational resources and confidential information, to
relay spam email messages, to mount distributed denial of service (DDoS) and
other attacks, to host phishing websites, and for other kinds of scams. To max-
imise the profit from these activities, multiple “infected” machines are grouped
together in a botnet (a network of bots) and used simultaneously to achieve the
same purpose [2]. With a single command, miscreants can control hundreds or
even thousands of bots [3]. The botnet problem is so extensive nowadays that it
has made headlines several times [4,5].

The most well known botnets are those related with the Warezov and the
Storm worms [6,7]. These botnets are infamous for the huge amount of spam
emails they have been generating, often containing links to malicious web servers
hosting various frauds as well as malicious web pages able to infect the machines
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of the visitors with malware. Of particular interest is the technique used by
those botnets to masquerade the identity of the malicious web servers in or-
der to maximise the availability of the service. If these web servers are difficult
to identify, they are difficult to shutdown, and they can hit more and more
victims. This technique, known as fast-flux service network, is very simple and
consists in associating the canonical hostname of a malicious web server (e.g.,
www.factvillage.com) with multiple IP addresses corresponding to the ad-
dresses of a subset of the bots of the botnet. Each victims’ request to visit the
web server will thus reach one of the bots and the bot will proxy the request
to the real server, making impossible to discover the identity of the malicious
web server without having full control of one of these bots. The association be-
tween the hostname of the web server and the IP addresses of the bots acting
as front-end proxies is updated very frequently such that newly compromised
machines can immediately take part in the game and dead bots are excluded
without affecting the availability of the service [8].

The impact that botnets using fast-flux service networks have on the Internet
community is tremendous [9]. Although the average lifetime of domains used for
malicious purposes, including the domains associated with fast-flux service net-
works, is very short, the lifetime of botnets using those domains is much longer.
As the identity of the hosts associated with those domains is well protected and
the bots that are part of the networks are difficult to track, botnets are difficult
to eradicate. Authorities put a lot of efforts to take down the domains registered
for malicious purposes, but these efforts are worthless because the bots are not
isolated. Before the domain is suspended, a new one is registered and associated
with the same set of bots, to replace the old one. Consequently, miscreants can
continue their malicious activity through their botnets without interruption.

The natural approach to monitor and detect botnets activity and the bots
involved is to passively analyse the network traffic. Unfortunately, that requires
the access to a significant network segment [10,11,12,13,14,15,16]. Fast-flux ser-
vice networks are interesting from the research point of view because they allow
to “observe” the botnet phenomenon from a completely different prospective,
the prospective of a victim of the botnet. In fact, the visibility a victim has on
the botnet is quite significant. More precisely, imagine a recidivous victim that
visits very frequently a malicious web site associated with a botnet and served
through a fast-flux service network. At each visit the victim is likely to access the
web site through a different bot (recall that the canonical hostname of the web
server is resolved into the IP address of one of the bots). After a large number of
visits, the recidivous victim will have discovered the IP addresses of the majority
of the active bots of the botnet.

This paper presents FluXOR, the system we have developed to detect and
monitor fast-flux service networks. Given a suspicious hostname, FluXOR, by
behaving like a recidivous victim, tries to detect if the hostname conceals a fast-
flux service network. Hostnames associated with fast-flux service networks are
then continuously monitored to find out all the IP addresses of the compromised
machines that are part of the botnet associated with the service network itself.
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FluXOR detection strategy is based on the combined analysis of nine distinguish-
ing features describing some properties of (i) the domain the suspicious hostname
belongs to, (ii) the degree of availability of the potential fast-flux service network,
and (iii) the heterogeneity of the potential hosts of the network.

We have been using FluXOR since the beginning of January 2008 to monitor
potential fast-flux service network whose hostnames were collected from spam
emails. So far the system correctly classified all the analysed hostnames (4961)
and 7.8% of them (387) turned out to be associated with fast-flux service net-
works, involving 31998 distinct compromised machines located all around the
world. Real-time results of the analysis are available on-line at http://fluxor.
laser.dico.unimi.it.

To summarise, this paper makes the following contributions:

– Identification of the features that, combined together, allow to precisely de-
tect whether or not a suspicious hostname conceals a fast-flux service network
(Section 3 and 4).

– Implementation of a strategy to monitor a fast-flux service network and to
detect the majority of the bots that are in the network (Section 5).

– Empirical analysis of the fast-flux service network phenomenon (Section 6).

2 Problem Description and Solution Overview

A fast-flux service network is a network of compromised hosts that is used to
carry out malicious activities, for example to deliver malware to users, to dis-
tribute illegal materials or to steal users’ credentials [8]. The service network
is identified by one or more fully qualified domain names (FQDNs) that are
resolved to multiple (hundreds or even thousands) different IP addresses, be-
longing to unaware compromised hosts, the fast-flux agents (or bots). The fun-
damental characteristic of a fast-flux service network is high availability, which
is provided by continuously updating the pool of agents serving the network.
Newly compromised hosts are inserted into the network, inactive or unreliable
hosts are removed, and victims are always redirected to the active and most re-
liable agents. The key is a combination of a very short time-to-live (TTL) of the
DNS resource records that associate the canonical name of the service network
with the set of IP addresses of the agents and a round-robin selection of these
records [17,18]. In the common setup, the agents do not carry out the malicious
activities, but they simply redirect received requests to the fast-flux mother-ship,
the controlling element of the network, whose identity must be kept secret. With
this setup, it is not possible to identify the mother-ship without having complete
control of one of the agents.

Imagine that the fully qualified domain name www.factvillage.com conceals
a fast-flux service network composed of hundreds of agents and that it is used to
attract users, with the promise of very cheap drugs, and to infect their machines
with malware. Figure 1 shows how our sample malicious contents provider lever-
ages the fast-flux service network to serve the victims. A victim, wishing to visit
the on-line drugstore, queries a name server (usually a non-authoritative name
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Fig. 1. An example of the fast-flux service network used by our sample malicious web
server www.factvillage.com, the entities involved and the communication between
these entities (nodes in gray denote hosts under the control of the miscreants and
shaded agents denote those that are not currently serving the network)

server which recursively queries the authoritative one) to resolve the hostname
of the website. The name server returns the addresses of a subset of the agents
currently active in the network, and the victim connects to one of them. The
agent then proxies the victim’s requests to the mother-ship, which in turn de-
livers the malicious contents. In background, the mother-ship, or another entity
controlled by the miscreants, continuously monitors the status of the agents and
updates the resource records of the authoritative name server of the domain (in
the example the authoritative name server is ns0.uthvfybz.com), to distribute
the network across the reliable agents. The short time-to-live associated to the
DNS resource records prevents non-authoritative name servers to cache for too
long the records that define the subset of agents currently serving the network.
When the cache expires the name server contacts again the authoritative name
server for the domain and gets the new list of agents serving the network. These
agents are selected from the set of all active agents in a round-robin fashion, to
balance their load.

Our goals are, given a fully qualified domain name, to verify whether it con-
ceals a fast-flux service network and, in such a case, to identify all the agents
that are part of the network. The prompt identification and isolation of all the
agents is important because if the service network is shutdown but the agents
remain under the control of miscreants, a new service network of the same extent
can be created by simply registering a new domain and reusing the same agents.
Moreover, these agents can be used for other malicious purposes (e.g., they can
be used as DDoS zombies, to steal personal information from the hosts they
are running on, and to act as spam bots). FluXOR is the name of the system
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we have developed to accomplish these goals. The key idea behind the system
is that a fast-flux service network has multiple distinguishing features that are
not typically found in benign fully qualified domain names. Some of the most
characteristic features are (i) the time-to-live of DNS resources records, (ii) the
large number of IP addresses into which the canonical hostname is resolved, and
(iii) the heterogeneous set of organisations that own these addresses. Clearly,
these features taken singularly are not enough to distinguish between benign and
malicious hostnames. As an example let us compare our sample malicious host-
name www.factvillage.com with the benign hostname database.clamav.net.
The latter is a typical example of how DNS resources records with very small
time-to-live and round-robin can be used to distribute the load across multiple
mirrors (in this case the mirrors are used to distribute updates for the database
of signatures of the ClamAV anti-virus [19]). Moreover, as mirrors are hosted by
universities and companies, the hosts running a mirror belong to different net-
works, owned by different organisations, and are distributed around the world.
Despite hosts like database.clamav.net have most of the characteristics of a
fast-flux service network, FluXOR, by monitoring the suspicious hostname for
a small period of time and by combining the extracted features using a näıve
Bayesian classifier [20], can precisely distinguish between hostnames that are
associated with fast-flux service networks from those that are not. It is worth
noting that the chosen approach works well also when some of the selected fea-
tures are not available.

When a fast-flux service network is detected, FluXOR continuously monitors
the service network, behaving like a victim and periodically querying various
DNS servers to resolve the canonical name of the network for the purpose of
enumerating the IP addresses of the compromised hosts that, even for a small
period of time, are used as agents.

A fast-flux service network, like the one described in this section, is known
in the literature as a single-flux network. More complex setups are possible, an
example is a double-flux network [8]. FluXOR handles indifferently any kind of
fast-flux service network, but unfortunately the current implementation does not
distinguish between the various types.

For the remaining of the paper, for conciseness, we will refer to the FQDNs
associated with a fast-flux service network as malicious and to all the others as
benign, although what in the paper is considered benign could be an hostname
created for other malicious purposes but not associated with a fast-flux service
network. Moreover, we will refer to any hostname whose maliciousness has not
been established yet as suspicious.

3 Characterising Fast-Flux Service Networks

The features used by FluXOR to distinguish between benign and malicious host-
names are summarised in Table 1 and discussed in detail in the remaining of the
section. The features are grouped in three categories: (i) features characteris-
ing the domain name to which the suspicious hostname belongs to, (ii) features
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Table 1. Summary of the features used to distinguish between benign and malicious
hostnames, grouped by category

Category # Description

Domain name
F1 Domain age

F2 Domain registrar

Availability of
the network

F3 Number of distinct DNS records of type “A”

F4 Time-to-live of DNS resource records

Heterogeneity
of the agents

F5 Number of distinct networks

F6 Number of distinct autonomous systems

F7 Number of distinct resolved qualified domain names

F8 Number of distinct assigned network names

F9 Number of distinct organisations

characterising the degree of the availability of the network that is potentially
associated with the suspicious hostname, and (iii) features characterising the
heterogeneity of the potential agents of the network. Some of the features might
appear similar initially, but, as shown later, each of them tells us something im-
portant about the suspicious hostname, especially because some features might
not be always available and because there is no well known convention about
how some of them are attributed.

3.1 Features Characterising the Domain Name

Domain age (F1). Benign domains are usually characterised by a relatively long
age.Domains used for malicious purposes instead are typically active only for short
periods of time. As soon as they are identified, they are deactivated by the author-
ity in charge of the corresponding top-level domain. Thus, miscreants have to reg-
ister new domains and start to use them right away, to successfully achieve their
malicious purposes. The average age of a benign domain is much older than the av-
erage age of malicious domain. Indeed, during our experiments, we have estimated
that the average age of malicious hostnames is less than five weeks.

Domain registrar (F2). We empirically observed that most of the domains used
to implement fast-flux service networks are registered through a limited number
of registrars, typically located in countries with a lax legislation against cyber-
crime. Our hypothesis is that these registrars perform almost no check when
domains are registered. Miscreants can easily complete the registration process
using false identities and paying with stolen credit card numbers, making impos-
sible, for the authorities, to identify the person who has effectively registered a
domain. On the other hand, the set of registrars used to register benign domains
is more heterogeneous and is not likely to overlap with the set of registrars used
by miscreants.
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3.2 Features Characterising the Degree of Availability of the
Network

Number of distinct DNS “A” records (F3). Fast-flux service networks are gener-
ally composed by a large number of agents. The authoritative name server for the
malicious domain, when queried, returns the set of active agents (i.e., the subset
of agents currently serving the network) by returning multiple DNS “A” records,
each one containing the IP address of a specific agent. These resource records are
periodically updated by the fast-flux mother-ship to put in the network newly
compromised agents and to remove the faulty ones. Thus, after a reasonable long
span of time, the number of distinct DNS records of type “A” (i.e., agents IP
addresses) that had or have been associated with a malicious FQDN is rather
large. The higher the number of distinct DNS records of type “A” associated to
the same FQDN, the larger the number of potential agents, and the higher the
probability that the FQDN conceals a fast-flux service network.

Time-to-live of DNS resource records (F4). The fundamental characteristic of
fast-flux service networks is the high frequency at which the set of active agents
is updated. Most of the agents are end-user machines and consequently it is rea-
sonable to expect that they will appear on-line and disappear very frequently.
Thus, to guarantee the high availability of the service offered through the fast-
flux network, the set of active agents has to be updated as soon as one of them
changes its state. Moreover, the update must be promptly propagated across
the Internet, down to the victims. To achieve this goal, the authoritative name
server for the malicious domain associates a very short time-to-live to the DNS
resource records of the domain. That forces non-authoritative name servers,
used by the victims, to flush their cache and to query the authoritative name
server very frequently, that in turn returns a different set of active agents every
time. The higher the time-to-live associated to the various DNS resource records
of a domain, the lower the probability that the domain is malicious. Unfortu-
nately the converse is not always true. Several authoritative name servers for be-
nign domain names associate very short time-to-live to their records for various
purposes.

3.3 Features Characterising the Heterogeneity of the Agents

Number of distinct networks (F5). Fast-flux agents are usually randomly com-
promised hosts scattered all around the globe. Thus, a malicious FQDN is re-
solved to many different IP addresses belonging to hosts that very likely belong
to different networks. On the other hand, when a benign FQDN encompasses
multiple hosts, for load-balancing purposes, these hosts often belong to the same
network because they are owned by the same company and physically very close
to each other. The higher the number of distinct networks associated to the
same FQDN, the more scattered the hosts are, and the more likely these hosts
have been compromised and have been used as fast-flux agents. As an example
compare the networks associated with the benign FQDN hp.com with those as-
sociated with the malicious FQDN www.factvillage.com, reported respectively
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Table 2. Comparison of the host specific features (F5 to F9) characterising two be-
nign and one malicious FQDNs (the entries in bold are those common to multiple IP
addresses)

IP address F5 F6 F7 F8 F9

15.216.110.140 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard
15.192.45.22 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard
15.200.30.24 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard

(a) hp.com (benign)

IP address F5 F6 F7 F8 F9

67.228.112.196 67.228.0.0/16 AS36351 avast.com SOFTLAYER-4-5 SoftLayer Tech.
216.12.205.130 216.12.192.0/19 AS36420 avast.com EVRY-BLK-4 Everyone Internet
74.86.245.119 74.86.0.0/16 AS36351 avast.com SOFTLAYER-4-4 SoftLayer Tech.

(b) www.avast.com (benign)

IP address F5 F6 F7 F8 F9

61.18.66.? 61.18.0.0/16 AS9908 hkcable.com.hk HKCABLE-HK HK Cable TV
218.47.195.? 218.47.0.0/16 AS4713 ap.plala.or.jp PLALA Plala Net. Inc.
81.173.151.? 81.173.151.0/24 AS8422 netcologne.de NC-DIAL-IN-POOL NetCologne

(c) www.factvillage.com (malicious)

in Table 2(a) and Table 2(c). The IP addresses associated with the former all
belong to the same network (15.0.0.0/8), while the addresses associated with
the latter belongs to completely different networks. As shown in the example of
Table 2(b) where each IP address associated with www.avast.com belongs to a
separate network, this is not always the case.

Number of distinct autonomous systems (F6). An autonomous system (AS) is a
connected group of one or more IP prefixes run by one or more network opera-
tors with a single and clearly defined routing policy [21]. Thus, distinct networks,
but physically very close, might be connected to the Internet through the same
AS. As with the previous feature, the majority of benign FQDNs are mapped
to hosts located in a circumscribed geographical area and are all part of the
same autonomous system. On the other hand, as the agents of a fast-flux net-
work are scattered across all the countries, they typically belong to distinct
autonomous systems. As an example let us compare the autonomous systems
associated with the benign FQDN www.avast.com, with those associated to
www.factvillage.com (Tables 2(b) and 2(c) respectively). In the first case we
have three distinct networks but only two autonomous systems. In the second
case, each host, as located in a different country, is part of a different AS.

Number of distinct resolved qualified domain names (F7). Even if a FQDN is asso-
ciated with multiple hosts scattered around the globe and part of distinct networks
and autonomous systems, the hosts might still be owned by the same company
or organisation and thus they can share the same qualified domain name. As an
example let us compare the benign FQDNs of Tables 2(a) and 2(b) with the mali-
cious www.factvillage.com of Table 2(c). In the first two cases both hostnames
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are resolved into multiple IP addresses, but these addresses are in turn resolved
into canonical hostnames belonging to the same domain (i.e., polyserve.comand
avast.com respectively). The example of www.avast.com clearly indicates that
all the IP addresses found are legitimate. Unfortunately, that is not completely
evident in the case of hp.com because the domain name (polyserve.com) does
not match the domain name of the suspicious FQDN under analysis. Nevertheless,
all the IP addresses found are part of the same domain, which is not
common for malicious FQDNs. Indeed, fast-flux agents are compromised hosts
belonging to distinct organisations, and the canonical hostnames associated with
their IP addresses are solely under the control of the respective owners of the net-
works and the attacker cannot control in any way these information. In the case
of www.factvillage.com, each of the three IP addresses found, probably used by
dial-up hosts, is resolved into a hostname with a distinct qualified domain, corre-
sponding to that used by the ISP providing the service.

Number of distinct assigned network names (F8). The network name is the name
assigned to a network by the registration authority. Multiple network addresses
can be logically grouped under the same network name. This is often the case
when the different network addresses are owned by the same company or organ-
isation. Like the other three previous features, the number of distinct network
names is an indication of the degree of scattering of the hosts associated with
the suspicious FQDN.

Number of distinct organisations (F9). Each network is assigned to an organisa-
tion, but as with network names, same organisation can own multiple networks
with one or multiple names. As an example let us consider the benign domain
avast.com analysed in Table 2(b). Each network is assigned a distinct network
name, but two of these networks belong to the same organisation (i.e., Soft-
Layer Technologies Inc.). Clearly, fast-flux agents randomly distributed around
the world share a limited number of organisations.

4 Combining the Features for Detection

FluXOR initially monitors suspicious hostnames for a short period of time, after
which the selected features are analysed to determine whether the domain is
malicious or not. The number of domains is incredibly growing. Indeed, it has
been estimated that several hundreds of thousands of generic second-level do-
mains (e.g., .com, .org, .net) are registered daily [22]. Consequently, the number
of suspicious hostnames to monitor can be very large and it is essential that
a precise classification can be accomplished in the shortest period of time, to
reduce the workload of the system, but also to promptly intervene to mitigate
the damage fast-flux service networks and their bots can cause to the Internet
community.

Table 3 shows a comparison of the features of three FQDNs, associated with as
many distinct fast-flux service networks, with those of three benign hostnames.
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Table 3. Comparison of three sample benign and malicious FQDNs using the selected
features (F1 is measured in weeks) and comparison of the features of the average benign
and malicious FQDNs (computed from a set of about 75 benign and 215 malicious
hostnames monitored for about three hours)

FQDN F1 F2 F3 F4 F5 F6 F7 F8 F9

B
en

ig
n

www.avast.com 539 NetworkSolutions 12 3600 5 3 1 5 2
adriaticobishkek.com 65 Melbourne IT 21 1200 1 1 1 1 1
google.com 542 MarkMonitor 3 300 2 1 1 1 1
Mean 493.27 N/A 2.86 4592.53 1.27 1.11 1.08 1.21 1.07
Standard dev. 289.27 N/A 3.89 7668.74 0.65 0.36 0.74 0.58 0.25

M
al

ic
io

u
s www.eveningher.com 18 PayCenter 127 300 83 49 33 71 54

www.factvillage.com 2 PayCenter 117 300 81 46 34 67 54
www.doacasino.com 2 NameCheap 33 180 19 14 11 19 14
Mean 4.85 N/A 98.13 261.49 63.75 38.36 27.98 53.58 41.47
Standard dev. 4.9 N/A 37.27 59.64 23.91 12.34 8.5 18.73 15.41

Note that the features reported in the table were extracted after only three hours
of monitoring. From a quick glance at the numbers in the table it should be clear
that each of the selected features effectively tells us something important about
the maliciousness of a hostname. Although it is easy to spot by hand benign and
malicious hostnames, the numbers in the table show a high variability in the most
intuitive features (e.g., F3 and F4). For all the analysed hostnames reported in
the table it was possible to extract all the selected features. In the general case
some of these features might be missing, but nevertheless the system must be
able to correctly discern between malicious and benign hostnames. Furthermore,
hosts associated with malicious hostnames tend to be rather scattered, but the
degree of the scattering and the number of fast-flux agents might depend on
the amount of time the fast-flux service network has been active. If hosts are
compromised and turned into agents using a self-propagating malware (e.g., that
identifies targets using weak random scanning), it is reasonable to believe that,
in the early stage, the agents are rather localised and limited in number. Our
goal is to be able to detect if a hostname is malicious as soon as possible, even
when the number of agents involved is very small.

For these reasons the detector tries to achieve the best accuracy by combining
the selected features using a näıve Bayesian classifier [20]. Given the features of
a suspicious hostname, the classifier returns the class (i.e., benign or malicious)
to which the hostname is most likely to belong to. The classifier was trained with
a set of malicious and benign FQDNs that we manually classified, with the help
of data obtained after a week of monitoring. The set of malicious hostnames was
composed of hostnames found in spam emails. The set of benign hostnames was
composed of hostnames found in spam and non-spam emails. Furthermore, the
latter set was extended, to make it more heterogeneous, by adding the address
of some randomly selected websites we recently visited. The assumption that
the features are completely independent, made by this type of classifier, might
appear to simplistic (e.g., features like F5, F6, F8, and F9 could be correlated).
Nevertheless, this approach turned out to have very good performance in many
real-world situations and the work of Zhang has shown that the efficacy of näıve
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Fig. 2. Typical deployment of the system. Multiple collectors and monitors can be used
to distribute the workload and to uniformly blend the system in the victims.

Bayesian classifiers has some theoretical foundations [23]. In our context, as
discussed later in Section 6, this approach gives very accurate results (for this
reason we decided not to evaluate other classifiers). Our hypothesis is that, in
practise, no real correlation between the alleged correlated features (F5, F6, F8,
and F9) exists because no convention regulates how ISPs should partition their
address space. For example the network associated with a single autonomous
system (F6) could be divided into sub-networks and multiple sub-networks (F5)
can be assigned to the same organisation (F9).

5 Architecture and Implementation of the System

The architecture of FluXOR is very simple. The system is divided in three com-
ponents and each one accomplishes a very specific task: (i) one or more collectors
of suspicious hostnames, (ii) one of more monitors of suspicious and malicious
hostnames, and (iii) a detector of fast-flux service networks. Figure 2 shows the
typical deployment of the system.

FluXOR is entirely developed in Python and consists of about 2150 LOC,
without including the code of the web interface used to display the results of the
analysis.

5.1 Collector

The collector harvests from various sources hostnames that could be associ-
ated with fast-flux service networks. Examples of sources are unsolicited emails,
instant messages and post in public web forums and blogs. The current imple-
mentation of FluXOR only supports harvesting of suspicious hostnames from
emails. In the future this component will be extended to support other sources,
for example using web crawlers and honeypots. Newly collected hostnames are
flagged as suspicious and are considered as such and monitored until the detector
classifies them.
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5.2 Monitor

The monitor is responsible for monitoring suspicious and malicious hostnames.
Benign FQDNs, instead, do not need to be monitored (recall that benign host-
names are those already monitored in the past and classified as such). The distin-
guishing features used by FluXOR to detect fast-flux service networks are extracted
from data obtained by querying two different sources: (i) non-authoritative name
servers and (ii) WHOIS servers. Once a malicious hostname is detected, instead,
it is sufficient to perform a subset of the queries used to monitor suspicious host-
names, that is, those used to extract features describing the heterogeneity of the
agents. For statistical and analysis purposes other information about the agents
are also collected (e.g., the country in which the hosts are located and their geo-
graphical location). A description of the queries performed follows.

Features characterising the domain name (F1 and F2). Given a FQDN like
www.factvillage.com, the age of the domain and the registrar in charge for
the domain are determined through WHOIS queries on the name of the second-
level domain (e.g. factvillage.com). Although the query is conceptually trivial,
it presents a serious challenge from the practical point of view. The WHOIS pro-
tocol does not define the format in which replies to queries have to be formatted
and registries are free to choose the format they like more [24]. Moreover, some
registration authorities omit to publish part of the information needed by our
analysis. Today the entire IPV4 address space is assigned to 10 different reg-
istries. Things are more and more complicated for top-level domains because
each domain is assigned to a different registry1. Currently we are using a cus-
tom WHOIS client that is able to parse the format used by the most common
registration authorities. To deal with the registries not currently supported by
our client, we rely on a commercial service, that extracts WHOIS information
and convert them in XML and offers a free limited number of queries per day. In
the future we will extend our client to make the system completely independent
from third parties.

Features characterising the degree of availability of the network (F3 and F4).
The natural approach to enumerate all the resource records of type “A” asso-
ciated with a particular FQDN (i.e., the IP addresses of the potential fast-flux
agents) and the time-to-live of the various records would be to query directly
the authoritative name server for the suspicious domain. Although at each query
we would always obtain “fresh” records and we would have the highest chance
to see previously unseen records (i.e., in the ideal case records are rotated at
each query and always have the highest time-to-live), the malicious authoritative
name server could easily correlate the high number of queries with a system like
FluXOR and consequently fool the analysis by returning fake resource records.
1 Obviously, a malicious registrar returning (directly or indirectly) fake answers to

our WHOIS queries could fool our system. However, in our opinion, that is very
improbable: top-level domain registrars are accredited directly by ICANN and they
risk to compromise their entire business if they are found to be malicious.
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The solution currently adopted by FluXOR is to collect the information by issuing
recursive queries through multiple public non-authoritative name servers, such
that FluXOR queries are blended in the victims’ queries. To estimate the max-
imum time-to-live of the resource records, to maximise the number of agents
seen, and to minimise the network traffic, non-authoritative name servers are
queried immediately after the cached records have expired.

Features characterising the heterogeneity of the agents (F5 to F9). The remain-
ing features are specific to the IP addresses into which a suspicious FQDN is
resolved to. The number of distinct networks (F5) associated with the same
FQDN is computed by enumerating the distinct networks associated with the
IP addresses of the potential fast-flux agents. This information can be obtained
through a WHOIS query, one for each IP address, directed the respective reg-
istry. Similarly, the number of distinct autonomous systems associated with the
same FQDN (F6), is obtained by querying the databases of the regional reg-
istries for the AS to which each IP address belongs to. The number of distinct
domain names associated with the IP addresses of the potential fast-flux agents
(F7) are obtained by querying name servers for pointer (PTR) resource records
associated with each IP address (this kind of query is commonly known as “re-
verse lookup”). The hostnames obtained are subsequently split to extract the
domain name. The network name and the organisation owning the network (F8
and F9) are obtained through WHOIS queries. Unfortunately some of the infor-
mation from which we extract the features of interest are not always available.
An example are PTR records associated with the IP addresses of the potential
agents.

5.3 Detector

The detector of malicious hostnames feeds the set of collected features of the
suspicious hostname to the näıve Bayesian classifier for the classification. The
classifier is built on top of Weka [25], using the classification algorithm called
“NaiveBayesSimple”, which models numeric attributes by a normal distribution.

6 Experimental Results

We have been running FluXOR since the beginning of January, but unfortunately
the system has been working without interruption only since mid January. Cur-
rently the monitor and the detector are located on the same machine, an AMD
Athlon XP 1.8GHz with 384Mb of RAM, running GNU/Linux and using MySQL
for the persistent storage. The detector has been trained with three different
data-sets, containing features extracted after one, two, and three hours of mon-
itoring respectively. The three training sets were composed by 50 benign and 75
malicious FQDNs manually analysed and classified. The collector was located on
the mail server of our laboratory and processed all the spam emails forwarded
by the mail server of our department. Malicious FQDNs were all extracted from
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Table 4. Summary of the results obtained using FluXOR to monitor the suspicious
hostnames found in spam emails. Note that the number of agents is the number of
distinct IP addresses. Dial-up hosts using dynamically assigned addresses might use
multiple addresses and multiple hosts might share some addresses.

Description #

Processed spam email messages 44804

Extracted URLs 15281

Active FQDNs (whose hostname could be resolved) 4961

Fast-flux service networks 387
Fast-flux agents 31998
Botnets 16

spam emails, while benign hostnames were extracted from emails (both spam
and non-spam) and from the history of our browsers.

Table 4 summarises the most important numbers of our experiments: the
volume of spam email messages processed, the number of URLs extracted, the
number of FQDNs active at the time the emails were received, the number of
fast-flux service networks detected, the number of distinct fast-flux agents, and
the number of hypothetical botnets the detected fast-flux agents were part of.
About 7.8% of the active FQDNs turned out to conceal fast-flux service networks
served by 31998 distinct fast-flux agents, which we believe to belong to 16 distinct
botnets (we considered two fast-flux service networks associated with the same
botnet if they were pointing to the same website).

We evaluated the detection accuracy automatically, before training the clas-
sifier, and manually by comparing the output of the detector with our belief.
Although during the manual analysis we found some corner case benign and
malicious hostnames, the detector always classified the suspicious hostnames cor-
rectly. That is, we had zero false-positives. We also tried to correlate the data
collected in the last month to understand the botnet phenomenon by observ-
ing botnets activity from the prospective of a victim, starting from hostnames
associated with fast-flux service networks found in spam emails.

6.1 Detection Accuracy

We evaluated the accuracy of our detection strategy following two different
strategies: (i) an automatic cross-validation with the three training data-sets
and (ii) a manual analysis of a random subset of the active FQDNs extracted
from the emails.

Part of our training data-set was used to estimate the accuracy of the model
using cross-validation, with 5 and 10 folds [26]. No hostname was misclassified.
The manual analysis was performed by comparing the response of the detector
with our belief about the maliciousness of the hostnames. Hostnames whose ma-
liciousness was difficult to attest were monitored for a day. The detector was
invoked three times on each sample, the first time with the features extracted
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after one hour of monitoring and the corresponding model, the second and the
third time with the features extracted after two and after three hours of monitor-
ing, and the corresponding model, respectively. Note that the amount of active
hostnames processed were rather large and impossible to analyse manually in its
entirety. Thus, we pruned the set using a filter to identify all the hostnames that
were undoubtedly benign (i.e., those, after three hours of monitoring, associated
with only two or less IP addresses and classified as benign). The manual analysis
confirmed the correctness of our classifier, no hostname was misclassified.

During the manual analysis of the accuracy of the detector we came across
some peculiar benign hostnames that had some of the characteristic of mali-
cious hostnames. Two examples of these hostnames are imageshack.us and
database.clamav.net. These hostnames are associated with very small
time-to-live and are resolved in multiple IP addresses, 129 and 21, respectively2.
All the 129 distinct IP addresses associated with the first hostname belong to the
same network. That makes us believe that the hosts are hosted in a server farm
somewhere and that load-balancing is implemented using DNS round-robin. On
the other hand, the IP addresses associated with database.clamav.net (see
the discussion in Section 2) are located in 12 distinct networks, because mirrors
are voluntarily hosted by companies and universities. Both hostnames belong to
domains registered several years ago through registrars that are not commonly
used by miscreants. In both cases FluXOR correctly classified the hostnames, even
when the detection was performed using the features collected during one hour
of monitoring only. Other examples of correctly classified benign hostnames that
share some of the features of hostnames used for fast-flux service networks are
pool.ntp.org and en.wikipedia.org.nyud.net (Wikipedia mirrored through
Coral Content Distribution Network).

We also identified several very young (or not very active) fast-flux service
networks for which, after an hour of monitoring, we only saw from three to five
distinct agents. After three hours of monitoring the size of the network was still
very small and reached only seven or eight agents. Despite the small number of
agents, the hostnames were always classified as malicious, even when detection
was performed using the data collected in an hour of monitoring. Not completely
convinced of the response of the detector, we continued to monitor the host-
names. After several days the service networks encompassed hundred of hosts.

Three observations are worth mentioning. First, the detector is surprisingly
precise. Second, in less than three hours we can precisely tell if a FQDN is
malicious or not. Third, the current status of the fast-flux service network might
not reflect the status of the network in the future (e.g., a hostname can be used
for any kind of purpose at the beginning and then associated with a fast-flux
service network in the future). The detector can only classify the current status

2 The hostname database.clamav.net is resolved into different IP addresses according
to the country from which the request comes from. During our experiments we used
a public DNS located in the U.S., which is the country with the highest number of
IP addresses associated with the hostname.
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Fig. 3. Number of fast-flux agents, serving some representative fast-flux service net-
works, detected during the time

of the hostname and, in order to detect a change of the status, the hostname
must be monitored and classified again.

6.2 Empirical Analysis of the Fast-Flux Service Networks
Phenomenon

Although we collected suspicious hostnames from a single source only and the
number of hostnames collected was rather small, the number of detected fast-
flux service networks and the number of their agents is unexpectedly very large.
About 7.8% of the hostnames analysed were malicious. In the following para-
graphs we briefly summarise some results we believe are interesting. Real-time
and complete results of the analysis can be found on-line at http://fluxor.
laser.dico.unimi.it

Figure 3 shows the number of fast-flux agents, belonging to six distinct net-
works, detected during the time. The number of agents detected depends on
many factors. For example the time-to-live of the DNS resource records, the
number of records returned at each query, and the frequency at which the set of
active agents is updated. The case of ibank-halifax.com is very impressive. In
less than a day we detected about 3000 agents. The turnaround of agents in the
average fast-flux service network is much smaller. The average number of new
agents detected daily was about 122.

We visited some of the websites served thorough the detected fast-flux ser-
vice networks and found out that several FQDNs were associated with the same
website. The networks were probably pointing to the same mother-ship. Our
hypothesis is that, to improve the availability of the system, miscreants regis-
tered multiple domains. If a domain was shutdown, victims could still be served
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Table 5. Some of the fast-flux service networks detected, grouped by botnet

Botnet (Website) # networks # agents
Halifax scam 1 13958

Canadian Pharmacy 312 4773

EuroPrimeCasino 7 3242

Cheap EOM Software 1 2371

PosteItaliane scam 1 50
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Fig. 4. Geographical distributions of the detected fast-flux agents

through the other domains. Thus, it is more difficult for the authorities to erad-
icate the scam. Besides the common website, this hypothesis is further corrob-
orated by the fact that multiple fast-flux service networks are served by the
same set of agents. Figure 3 shows that the number of agents detected during
the time for the FQDNs wherefell.com and cheaptmundo.com is growing sym-
metrically. We also observed that the two domains share the same authoritative
name servers and also about 81% of the agents. We believe it is reasonable to
assume that all the fast-flux networks pointing to the same website, and thus
used for the same fraud, are served by agents belonging to the same botnet. Ta-
ble 5 shows some of the hypothetical botnets associated with the detected fast
flux service networks, and their extent in number of agents (the name assigned
to the botnet is derived from the title of the main page of the website).

Figure 4 shows the geographical distribution of the detected agents. Their
heterogeneous geographical distribution testifies that the scale of the problem is
world-wide.

7 Related Work

The botnet problem has been studied by the research community mainly from
two different prospectives: from the prospective of the bot, to study its code
and its behaviours, and from the prospective of the network, to study the traffic
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generated by these bots. The approach proposed in this paper studies the phe-
nomenon from the prospective of a victim of the scams perpetrated by these
botnets.

The first analysis and characterisation of fast-flux service networks was pre-
sented by the HoneyNet project [8]. The report analysed the two types of net-
works seen so far (i.e., single-flux and double-flux service networks) and analysed
the behaviour of a malware with the capabilities of a fast-flux agent. The problem
of detecting and mitigating fast-flux service networks was concurrently addressed
by Holz et al. [27]. Our work and theirs are very similar. They also propose a
detection method based on the observation of some features common in fast-flux
service networks. However, while we employ 9 different features, Holz et al. focus
on just three features (i.e., the number of DNS “A” records, the number of DNS
“NS” records, and the number of distinct autonomous systems fast-flux agents
belongs to), one of which (the second) does not seem to be used at all for the clas-
sification. We believe such a limited set of distinguishing features could lead to
several false-positives, mostly because such features are also typical of domains
that employ some DNS load-balancing techniques (e.g., such as pool.ntp.org).
Our extensive evaluation has shown that FluXOR is undoubtedly robust and very
efficient. The work of Rajab et al. differs from ours in term of techniques and
goals. However, the point of view from which botnets are observed is similar to
ours [28]. We detect and monitor fast-flux service networks by performing simple
DNS and WHOIS queries. Similarly, in their work, Rajab et al. tracked botnets
by infiltrating in IRC channels and by measuring the cache-hit rate of the DNS
servers queried by the bots to contact their control centre.

The analysis of the network traffic generated by compromised machines trans-
formed into bots and the traffic generated by bot “management” open several
opportunities for understanding the phenomenon and for detection. Rishi, by
monitoring the network traffic for unusual IRC communications like connec-
tion to uncommon servers and ports and use of suspicious nicknames, detects
machines infected with bots [11]. Karasaridis et al. developed a transport and
application layer traffic analyser to detect IRC based bots on wide-scale [13].
Cooke et al. studied the effectiveness of detecting botnets by directly monitoring
IRC communications and other command and control activities. Unfortunately
their work demonstrated that a more comprehensive approach, based on the
correlation of data coming from multiple sources, is required to precisely de-
tect botnets. BotHunter correlates alerts coming from different types of sensors
to identify the communication sequences that occur during the infection pro-
cess (i.e., target scanning, infection exploit, binary egg download, and outbound
scanning) [12]. Dagon et al. used DNS redirection to detect machines part of
specific botnets and to understand how time and geographical location affect
the spread dynamics of these botnets [14]. The problem of understanding how
challenging is to estimate the size of botnets were addressed by Rajab et al. [3].
A similar problem was subsequently addressed by Dagon et al. [10]. They pro-
posed several metrics to measure the utility of botnets for various activities and



204 E. Passerini et al.

presented a taxonomy of botnets based on these metrics and on the topological
structure of the networks.

Many researchers have studied botnets by studying how bots behave and how
they are implemented. These bots can be analysed using dynamic, static, or a
hybrid dynamic and static analysis. BotSwat characterises and detect the typical
behaviours of bots using dynamic taint analysis [29]. Barford et al. statically
analysed the codebase of four of the most common IRC bots to understand
their propagation methods, the mechanism used for their remote control, the
delivery and the obfuscation mechanisms used [30]. Other specific bots have
been thoroughly analysed to understand the new techniques used and the best
method to block them [31,32,7].

8 Conclusion

Botnets represent one of the major threats for the Internet community. In this
paper we have presented FluXOR, the system we have developed to detect and
monitor fast-flux service networks. Fast-flux service networks are used by the
miscreants, controlling the biggest and most powerful botnets, to hide and to
maximise the availability of the core components of their business. Fast-flux ser-
vice networks offer researchers the possibility to observe a botnet from the out-
side, by simply observing what a victim of these botnets could observe. Through
FluXOR we have demonstrated that, by tracking fast-flux service networks with
very simple queries any end-user can perform, we were able to detect, in a very
short period of time, more than thirty thousands compromised machines re-
motely controlled by miscreants and used for various on-line frauds.
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Abstract. Stealthy malware, such as botnets and spyware, are hard to detect be-
cause their activities are subtle and do not disrupt the network, in contrast to DoS
attacks and aggressive worms. Stealthy malware, however, does communicate to
exfiltrate data to the attacker, to receive the attacker’s commands, or to carry out
those commands. Moreover, since malware rarely infiltrates only a single host in a
large enterprise, these communications should emerge from multiple hosts within
coarse temporal proximity to one another. In this paper, we describe a system
called TĀMD (pronounced “tamed”) with which an enterprise can identify candi-
date groups of infected computers within its network. TĀMD accomplishes this by
finding new communication “aggregates” involving multiple internal hosts, i.e.,
communication flows that share common characteristics. We describe character-
istics for defining aggregates—including flows that communicate with the same
external network, that share similar payload, and/or that involve internal hosts
with similar software platforms—and justify their use in finding infected hosts.
We also detail efficient algorithms employed by TĀMD for identifying such ag-
gregates, and demonstrate a particular configuration of TĀMD that identifies new
infections for multiple bot and spyware examples, within traces of traffic recorded
at the edge of a university network. This is achieved even when the number of in-
fected hosts comprise only about 0.0097% of all internal hosts in the network.

1 Introduction

It is clearly in the interest of network administrators to detect computers within their
networks that are infiltrated by spyware or bots. Such stealthy malware can exfiltrate
sensitive data to adversaries, or lie in wait for commands from a bot-master to forward
spam or launch denial-of-service attacks, for example. Unfortunately it is difficult to de-
tect such malware, since by default it does little to arouse suspicion: e.g., generally its
communications neither consume significant bandwidth nor involve a large number of
targets. While this changes if the bots are enlisted in aggressive scanning for other vul-
nerable hosts or in denial-of-service attacks—in which case they can easily be detected
using known techniques (e.g., [38, 27])—it would be better to detect the bots prior to
such a disruptive event, in the hopes of averting it. Moreover, such easily detectable
behaviors are uncharacteristic of significant classes of malware, notably spyware.

We hypothesize that even stealthy, previously unseen malware is likely to exhibit
communication that is detectable, if viewed in the right light. First, since emerging mal-
ware rarely infects only a single victim, we expect its characteristic communications,
however subtle, to appear roughly coincidentally at multiple hosts in a large network.

D. Zamboni (Ed.): DIMVA 2008, LNCS 5137, pp. 207–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Second, we expect these communications to share certain features that differentiate
them from other communications typical of that network. Of course, these two obser-
vations may pertain equally well to a variety of communications that are not induced
by malware, and consequently the challenge is to refine these observations so as to be
useful for detecting malware in an operational system.

In this paper we describe such a system, called TĀMD, an abbreviation for “Traffic
Aggregation for Malware Detection”. As its name suggests, TĀMD distills traffic ag-
gregates from the traffic passing the edge of a network, where each aggregate is defined
by certain characteristics that the traffic grouped within it shares in common. By refin-
ing these aggregates to include only traffic that shares multiple relevant characteristics,
and by using past traffic as precedent to justify discarding certain aggregates as normal,
TĀMD constructs a small set of new aggregates (i.e., without previous precedent) that
it recommends for examination, for example, by more targeted (e.g., signature-based)
intrusion detection tools. The key to maximizing the data-reducing precision of TĀMD

is the characteristics on which it aggregates traffic, which include:

– Common destinations: TĀMD analyzes the networks with which internal hosts
communicate, in order to identify aggregates of communication to busier-than-
normal external destinations. Spyware reporting to the attacker’s site or bot com-
munication to a bot-master (e.g., with IRC, HTTP, or another protocol) might thus
form an aggregate under this classification.

– Similar payload: TĀMD identifies traffic with similar payloads or, more specifi-
cally, payloads for which a type of edit distance (string edit distance matching with
moves [8]) is small. Intuitively, command-and-control traffic between a bot-master
and his bots should share significant structure and hence, we expect, would have a
low edit distance between them.

– Common internal-host platforms: TĀMD passively fingerprints platforms of in-
ternal hosts, and forms aggregates of traffic involving internal hosts that share
a common platform. Traffic caused by malware infections that are platform-
dependent should form an aggregate by use of this characteristic.

Alone, each of these methods of forming traffic aggregates would be far too coarse
to be an effective data-reduction technique for identifying malware, as legitimate traf-
fic can form aggregates under these characterizations, as well. In combination, how-
ever, they can be quite powerful at extracting aggregates of malware communications
(and relatively few others). To demonstrate this, we detail a particular configuration of
TĀMD that employs these aggregation techniques to identify internal hosts infected by
malware that reports to a controller site external to the network. Indeed, botnets have
been observed to switch controllers or download updates frequently, as often as every
two or three days [19, 11]; each such event gives TĀMD an opportunity to identify
these communications. We show that with traffic generated from real spyware and bot
instances, TĀMD was able to reliably extract this traffic from all traffic passing the edge
of a university network, while the number of other aggregates reported is very low.

In addition to identifying aggregates and ways of combining them to find malware-
infected hosts, the contributions of TĀMD include algorithms for computing these ag-
gregates efficiently. Our algorithms draw from diverse areas including signal process-
ing, data mining and metric embeddings. We will detail each of these algorithms here.
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2 Related Work

Botnet detection. Previous approaches to botnet detection rely on heuristics that as-
sume certain models of botnet architecture or behavior, such as IRC-based command-
and-control [7, 4, 26, 11], the presence of scanning activities, long idle time and short
response time for bots compared to humans [32], etc. Karasaridis et al. [19] proposed
an approach for identifying botnet controllers by combining heuristics that assume the
use of IRC communication, scanning behavior, and known models of botnet communi-
cation. BotHunter [14] models all bots as sharing common infection steps—namely tar-
get scanning, infection exploit, binary download and execution, command-and-control
channel establishment, and outbound scanning—and then employs Snort with various
malware extensions to raise an alarm when a sufficient subset of these are detected.
Thus, malware not conforming to this profile (e.g., spyware or bots engineered differ-
ently) would seemingly go undetected by their approach. Ramachandran et al. [36] ob-
served that botmasters lookup DNS blacklists to tell whether their bots are blacklisted.
They thus monitor lookups to a DNS-based blacklist to identify bots.

We believe our approach to be fundamentally different from the above approaches
in the following respect. While these approaches work from models of malware be-
havior (not unlike signature-based intrusion detection), our approach simply seeks to
identify new aggregates of communication that are not explained by past behavior on
the network being monitored. Like all anomaly-detection approaches, our challenge is
to demonstrate that the number of identified anomalous aggregates is manageable, but
it has the potential to identify a wider range of as-yet-unseen malware. In particular, the
assumptions underlying previous systems present opportunities for attackers to evade
these systems by changing the behavior of botnets, and these systems will fail to detect
other types of malware (e.g., spyware) that do not meet these assumptions.

Independently of or subsequently to our work [37], other works have begun to in-
corporate aspects of using aggregation for detecting bots. For example, BotSniffer [15]
looks for infected hosts displaying spatial-temporal similarity. It identifies hosts with
similar suspicious network activities, namely scanning and sending spam emails, and
who also share common communication contents, defined by the number of shared
bi-grams. BotMiner [13] groups together hosts based on destination or connection statis-
tics (i.e., the byte count, the packet count, the number of flows, etc.), and on their sus-
pected malicious activities (i.e., scanning, spamming, downloading binaries, or sending
exploits). BotMiner is more similar to TĀMD in the sense that they both identify hosts
sharing multiple common characteristics, but the characteristics on which TĀMD and
BotMiner cluster hosts are different. BotSniffer seeks to identify known bot activities,
such as scanning or spamming, and limits its attention only to bots using IRC or HTTP
to communicate with a centralized botmaster.

Various prior works on botnet detection use honeypots (e.g., [2, 33]). As honeypots
can only approximately mimic (at best) real user behavior, they may not attract spy-
ware or bots that rely on human action to infect users’ machines. Our approach, in not
requiring a honeypot, places no assumptions about the infection vector by which attacks
occur and whether these vectors present themselves in a honeypot. In doing so, we hope
to make our approach as general as possible.
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Techniques. The techniques we employ for aggregation, specifically on the basis of
external subnets to which communication occurs, include some drawn from the sig-
nal processing domain. While others have drawn from this domain in the detection of
network traffic anomalies, our approach has different goals and hence applies these
techniques differently. Coarsely speaking, past approaches extract packet header infor-
mation, such as the number of bytes or packets transferred for each flow, counts of TCP
flags, etc., in search of volume anomalies like denial-of-service attacks, flash crowds,
or network outages [39, 3, 22]. Lakhina et al. [25] studied the structure of network
flows by decomposing OD flows (flows originating and exiting from the same ingress
and egress points in the network) using Principal Component Analysis (PCA). They
expressed each OD flow as a linear combination of smaller “eigenflows”, which may
belong to deterministic periodic trends, short-lived bursts, or noise, in the traffic. Ter-
rell et al. [40] focused on multi-variate data analysis by grouping network traces into
time-series data and selecting features of the traffic from each time bin, including the
number of bytes, packets, flows, and the entropy of the packet size and port numbers.
They applied Singular Value Decomposition (SVD) to the time-series data. From ex-
amining the low-order components, they were able to detect denial-of-service attacks.
In general, transient and light-weight events would go unnoticed by these approaches,
such as spammers that send only a few emails over the course of a few minutes [35].
Our work, on the other hand, is targeted at such lighter-weight events and so employs
these techniques differently, not to mention techniques from other domains (e.g., metric
embeddings, passive fingerprinting). Ramachandran et al. [34], in assuming that spam-
mers exhibit similar email-sending behaviors across domains, constructed patterns cor-
responding to the amount of emails sent to each domain by known spammers. The
patterns are calculated from the mean of the clusters generated through spectral clus-
tering [6]. This is similar to our method of finding flows destined to the same external
subnets; however, they do not look at other aspects of spamming besides the destination.

Another technique we employ is payload inspection, specifically to aggregate flows
based on similar content. Payload inspection has been applied within methods for de-
tecting worm outbreaks and generating signatures. Many previous approaches assume
that malicious traffic is significantly more frequent or wide-spread than other traffic,
and so the same content will be repeated in a large number of different packets or flows
(e.g., [38, 21, 29, 18, 30]); we do not make this assumption here. Previous approaches to
comparing payloads includes matching substrings [28, 18] or n-grams [42, 29, 15], hash-
ing blocks of the payload [38, 22], or searching for the longest common substring [24].
Compared to these methods, our edit distance metric is more sensitive and accurate in
cases where parts of the message are simply shifted or replaced. Goebel et al. [11] in-
spected packet payload to find IRC bots with formatted nicknames. They observed that
often IRC bots have nicknames with common patterns, such as long random numbers
or country codes. However, this approach can only detect bots for which the nickname
format is known. ARAKIS from CERT Polska (http://www.arakis.pl) is an
early-warning system that generates signatures for new threats. Assuming new attacks
will have payloads not seen previously, they examine traffic from honeypots and dark-
nets to cluster flows with similar content (determined by comparing Rabin hashes) not
seen before, and that are performing similar activities, i.e., port scanning. A signature is
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generated from the longest common substrings of the similar flows. However, ARAKIS
currently only focuses on threats that propagate through port scanning.

Another tool for intrusion analysis is the commercial product StealthWatch from
Lancope (http://www.lancope.com). StealthWatch monitors all traffic at the
network border, checking for policy violations or signs of anomalous behavior by look-
ing for higher-than-usual traffic volumes. Although this is similar to our approach of
using past traffic as a baseline for identifying busier-than-normal external destinations,
they does not refine this information using, e.g., payload or platform aggregation as we
do here. Thus, it is primarily useful for detecting only large-volume anomalies like port
scanning and denial-of-service attacks.

3 Defining Aggregates

Given a collection of bi-directional flow records observed at the edge of an enterprise
network, our system aims to identify infected internal hosts by finding communica-
tion “aggregates”, which consist of flows that share common network characteristics.
Specifically, TĀMD deploys three aggregation functions to identify flows with the fol-
lowing characteristics: those that contribute to busier-than-usual destinations, that have
payloads for which a type of edit distance is small, or that involve internal hosts of a
common platform.

The aggregation functions take as input collections of flow records, Λ, and output
either groups (aggregates) of internal hosts that share particular properties or a value
indicating the amount of similarity between the input flow record collections. We pre-
sume that each flow record λ ∈ Λ includes the IP address of the internal host λ.internal
involved in the communication and the external subnet λ.external with which it commu-
nicates. λ also includes some portion of the payload λ.payload of that communication,
packet header fields, and the start and end time of the communication.

3.1 Destination Aggregates

Previous studies show that the destination addresses with which a group of hosts com-
municates exhibit stability over time, both in the amount of traffic sent and in the set-
membership of the destinations [1, 23]. Malware activities are thus likely to exhibit
communication patterns outside the norm, i.e., contacting destinations that the internal
hosts would not have contacted otherwise.

The destination aggregation function ByDestτ (Λ, Λpast) takes as input two sets
Λ, Λpast of communication records. The variable τ is a parameter to the function, as
described later in this section. By analyzing the external addresses with which inter-
nal hosts communicate in Λ and Λpast, the function outputs a set SuspiciousSubnets of
destination subnets for which there is a larger number of interactions with the internal
network, using Λpast as a baseline. The function also outputs an integer numAggs and
a set Aggi (1 ≤ i ≤ numAggs), where Aggi are internal hosts (IP addresses) that origi-
nated traffic in Λ, and who contributed to larger-than-usual number of interactions with
an external destination subnet in SuspiciousSubnets.
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At a high level, the set SuspiciousSubnets of selected “suspicious” external desti-
nations is determined after filtering out periodic and regular activities in the commu-
nications of the network as represented in the past traffic Λpast. External destinations
observed in Λ that do not follow the norm, i.e., that according to Λpast are busier than
usual or have not been contacted before, are thus output in SuspiciousSubnets.

Below we describe the three processing steps in ByDestτ (Λ, Λpast): (i) Trend filter-
ing, which selects the set of suspicious external destinations; (ii) Dimension reduction,
which first characterizes each host by a vector indicating which suspicious destinations
it interacted with, and then reduces the dimensionality of these vectors while preserving
most of the information; and (iii) Clustering, which forms clusters of the vectors (i.e.,
internal hosts) by the destinations they contacted.

Trend Filtering. Trend filtering aims to remove regular and periodic communications
from Λ, so that external destinations showing behavior outside the norm are identified.
In particular, the “norm” is defined, for each external destination subnet, by the average
number of internal hosts that communicate with that subnet in various periodic inter-
vals, as recorded in Λpast. For example, periodic patterns, such as Windows machines
connecting to the Windows update server on a weekly basis or banking websites experi-
encing traffic spikes on pay day each month, can be inferred from Λpast. The change in
activity of a destination in Λ can then be measured by how much more traffic it received
in Λ compared to its average values for previous time intervals in Λpast. In the current
implementation, a destination is selected to be in SuspiciousSubnets if no internal host
has been seen to communicate with it for all previous periodic time intervals in Λpast.

Dimension Reduction. Given SuspiciousSubnets, each internal host can be represented
as a binary vector v = (v[1], v[2], · · · , v[k]) for which the dimensionality k is equal
to the number of destinations in SuspiciousSubnets. A dimension v[i] is set to 1 if
the internal host communicated with destination i in SuspiciousSubnets (according to
Λ), and 0 otherwise. However, the dimensions may be redundant or dependent on one
another; e.g., retrieving a web page can cause other web servers to be contacted. To
identify such relationships between the destinations and to further dimension reduction,
we apply Principal Component Analysis (PCA).

PCA [17] is a method for analyzing multivariate data. It enables data reduction by
transforming the original vectors onto a new set of orthogonal axes, i.e., principal com-
ponents, while preserving most of the original information. This is done by having each
principal component capture as much of the variability in the data as possible.

While a vector originally has length equal to the number of suspicious destinations,
the transformed vector after PCA has a dimensionality that is the number of selected
principal components, with each dimension now representing a linear combination of
the external destinations. The number of selected principal components depends on
the amount of variance we want to capture in the data, denoted as the parameter τ .
The more variance to be captured, the more accurate the transformation represents the
original data, but, at the same time, more principal components are needed, increasing
the dimensionality.
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Clustering. PCA reduces the vector dimensionality significantly, after which hosts con-
necting to the same combinations of destinations can be identified efficiently through
clustering. ByDestτ (Λ, Λpast) forms clusters of the vectors (i.e., internal hosts) whose
traffic is present in Λ using a K-means clustering algorithm [20], which does not require
the number of clusters to be known in advance.

1. Randomly select a vector as the first cluster hub. Assign all vectors to this cluster.
2. Select the vector furthest away from its hub as a new cluster hub. Re-assign all

vectors to the cluster whose hub it is closest to.
3. Repeat step 2 until no vector is further from its hub than half of the average hub-hub

distance.

Cosine distance is used for comparing vector distances, i.e., CosineDist(v1, v2) =
cos−1((v1 • v2)/(|v1||v2|)), for two vectors v1 and v2, where the symbol • is the dot
product between the two vectors, and |v1| is the length of vector v1. Cosine distance is
essentially a normalized dot product of the vectors, where a particular dimension would
contribute to the final sum if and only if both vectors have a nonzero value in that di-
mension. In our case, each vector represents a particular internal source host, and each
dimension represents a linear combination of destination subnets. Cosine distance thus
captures well the relationship between source hosts based on the common destinations
they contacted.

Let numAggs denote the number of clusters from the above algorithm, and let Aggi

(i = 1 . . .numAggs) denote the hosts whose vectors comprise the i-th cluster. As such,
Aggi is an aggregate of internal hosts interacting with the same busier-than-usual ex-
ternal subnets. Again, all of SuspiciousSubnets, numAggs and {Aggi}1≤i≤numAggs are
output from ByDestτ (Λ,Λpast).

3.2 Payload Aggregates

Payload inspection algorithms for malware detection have previously focused on either
modeling byte-frequency distributions (e.g., [38, 21, 29, 18]), which assumes that ma-
licious traffic should exhibit an observably different byte-frequency distribution from
that of normal traffic, or substring matching (e.g., [42, 28]). In contrast to these ap-
proaches, our measure of payload similarity is edit distance with substring moves, which
we choose because it is capable of capturing syntactic similarities between strings, even
if parts of one string are simply shifted or replaced. To our knowledge, ours is the first
work that detects malicious traffic by computing (a type of) string edit distance be-
tween payloads, and that develops techniques to scale these computations to high data
rate environments.

For two character strings s1 and s2, EditDist(s1, s2) is defined as the number of
character insertions, deletions, substitutions, or substring moves, required to turn s1
into s2. Given a string s = s[1] · · · s[len(s)], a substring move with parameters i, j, and
k transforms s into s[1] · · · s[i − 1], s[j] · · · s[k − 1], s[i] · · · s[j − 1], s[k] · · · s[len(s)]
for some 1 ≤ i ≤ j ≤ k ≤ len(s). For example, swapping labeled parameters in a
parameter list would be a substring move in a command string.

The payload comparison function ByPayloadδEd(Λ) that we introduce for use in
Section 4 takes as input a set Λ of communication records, and outputs a value in the
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range [0, 1]. It is parameterized by an edit distance threshold δEd that determines if com-
munication records λ, λ′ are “close enough”, i.e., if EditDist(λ.payload, λ′.payload) ≤
δEd. Its output indicates from among all pairs (λ, λ′) ∈ Λ × Λ such that λ.external =
λ′.external (i.e., that involve the same external subnet) and λ.internal �= λ′.internal
(i.e., that are not from the same internal host), the (approximate, see below) fraction for
which EditDist(λ.payload, λ′.payload) ≤ δEd.

Since Λ can be large, computing ByPayloadδEd(Λ) by computing EditDist(λ.payload,
λ′.payload) for each relevant (λ, λ′) pair individually can be prohibitively expensive,
i.e., requiring time proportional to |Λ| · |Λ|, where |Λ| denotes the cardinality of Λ.
A contribution of our work is an algorithm for approximating the fraction of relevant
record pairs (λ, λ′) that satisfy EditDist(λ.payload, λ′.payload) ≤ δEd in time roughly
proportional to |Λ| if δEd is small.

To perform this approximation, we first embed the EditDist metric within L1 distance
L1Dist, where for two vectors v1 = v1[1 . . .m], v2 = v2[1 . . .m], L1Dist(v1, v2) =∑m

i=1 |v1[i] − v2[i]|. That is, we transform each λ.payload into a vector vλ so that if
EditDist(λ.payload, λ′.payload) ≤ δEd then L1Dist(vλ, vλ′) ≤ δL1 for a known value
δL1. We do so using an algorithm due to Cormode et al. [8] called Edit Sensitive Parsing
(ESP). For this algorithm, the ratio of δL1 over δEd is bounded by O(log n log∗ n), where
n is the length of λ.payload.1 In our evaluation in Section 5, n = 64 and we set δL1 =
δEd · log10 64.

The embedding of EditDist into L1Dist is essential to our efficiency gains, since it
enables us to utilize an approximate nearest-neighbor algorithm called Locality Sensi-
tive Hashing (LSH) [10] to find vectors (and hence payload strings) near one another in
terms of L1Dist (and hence in terms of EditDist), in time roughly proportional to |Λ|.
Briefly, LSH hashes each vector using several randomly selected hash functions; each
hash function maps the vector to a bucket. LSH ensures that if L1Dist(v1, v2) ≤ δL1,
then the buckets to which v1 and v2 are hashed will overlap with high probability (and
will overlap with much lower probability if not), where probabilities are taken with re-
spect to the random selection of the hash functions. Consequently, we hash vλ for each
λ ∈ Λ, and explicitly confirm that EditDist(λ.payload, λ′.payload) ≤ δEd only for pairs
(λ, λ′) for which vλ and vλ′ hash to at least one overlapping bucket.

While edit distance may not be meaningful for encrypted messages, we can gener-
alize the payload comparison function to define encrypted payload (e.g., detected by
its entropy) as “similar”. Exploring payload aggregation using other metrics is part of
ongoing work; see Section 6.

3.3 Platform Aggregates

Forming traffic aggregates based on platform can be useful in identifying malware in-
fections that are platform dependent. That is, suspicious traffic common to a collection
of hosts becomes even more suspicious if the hosts share a common software platform.

Much host platform information can be inferred from traffic observed passively. Pas-
sive tools, unlike active fingerprinting tools like Nmap (http://insecure.org),

1 log∗ n denotes the iterated logarithm of n, i.e., the number of times the logarithm must be
iteratively applied before the result is less than or equal to one.
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do not probe hosts, but rather listen silently. The most comprehensive passive oper-
ating system fingerprinting tool of which we are aware is p0f (http://lcamtuf.
coredump.cx/p0f.shtml), which extracts various IP and TCP header fields from
SYN packets and uses a rule-based comparison algorithm. However, p0f cannot be ap-
plied to traffic traces in the flow-record format available to us (see Section 5), since
most individual packet information (including for SYN packets) is not retained.

At the time of this writing, TĀMD employs two heuristics for fingerprinting internal
host operating systems passively. The first employs time-to-live (TTL) fields witnessed
at the network border in packets from internal hosts. It is well-known that in many cases,
different operating system types select different initial TTL values (e.g., see http://
secfr.nerim.net/docs/fingerprint/en/ttl default.html). With a
detailed map of the internal network, the observed TTL values can be used to infer
the exact initial TTL value and so narrow the possibilities for operating system the
host is running. However, a detailed map is typically unnecessary, as routes in most
enterprise networks are sufficiently short that witnessing TTLs of packets as they leave
the network enables the initial TTL values to be inferred well enough.

The second heuristic employed in TĀMD watches for host communications char-
acteristic of a particular operating system platform. For example, Windows machines
connect to the Microsoft time server by default during system boot for time sychroniza-
tion, and the FreeBSD packages FTP server is more likely to be accessed by FreeBSD
machines to install software updates. Once characteristic communications for platforms
are identified, TĀMD can monitor for these to learn the platform of an internal host.

There are at least three limitations of such passive fingerprinting approaches for our
purposes. First, DHCP-assigned IP addresses can be assigned to hosts with different
operating systems over time, leading to inconsistent indications of the host operating
system associated with an IP address. This suggests that TĀMD should weigh recent
indications more heavily than older (and hence potentially stale) indications. Second, a
machine with a compromised kernel could, in theory, alter its behavior to masquerade
as a different operating system. In the absence of a possible IP address reassignment
(e.g., for address ranges not assigned via DHCP), such a shift in behavior should itself
be detectable evidence that a compromise may have occurred. In general, however, this
limitation is intrinsic to any fingerprinting technique, passive or active, except those
based on attestations from trusted hardware (e.g., TCG’s Trusted Platform Module,
https://www.trustedcomputinggroup.org/groups/tpm/). While we
are unaware of malware that employs such a masquerading strategy, should platform-
based aggregation for malware detection become commonplace, such systems would
presumably need to migrate to attestation-based platform identification as it matures,
in order to detect kernel-level compromises. User-level compromise should not affect
platform-based aggregation using conventional fingerprinting techniques, however. The
third limitation to forming aggregates based on platform is that it is likely for an enter-
prise to have the majority of its hosts running the same operating system. Thus
ByPlatform would be more effective for networks with a diverse host population; for
example, in a university setting.

Presently TĀMD uses the aforementioned heuristics based on TTL values and com-
munication with characteristic sites to identify platforms. For use in Section 4, we
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embody this in a function ByPlatform(Λ) that returns the largest fraction of internal
hosts in Λ (i.e., among the hosts {λ.internal : λ ∈ Λ}) that can be identified as having
the same operating system, based on these heuristics applied to the traffic records Λ.

4 Example Configuration

In this section, we detail a configuration of TĀMD that identifies internal hosts infected
by malware by employing the functions described in Section 3. This configuration iden-
tifies platform-dependent malware infections that report to common sites, e.g., IRC
channels for receiving commands, public servers for downloading binaries, denial-of-
service victims to attack, or database servers for uploading stolen information. This
configuration is based on several observations about such malware:

O1. For even moderately aggressive malware, it is rarely the case that only a single
victim exists in a large enterprise network, and so we hypothesize that stealthy
malware is likely to generate traffic that appears within the same, coarse window
of time (e.g., within the same hour) from multiple infected hosts. Moreover, we
would expect that the controller site is located in a subnet that would not be a com-
mon one with which benign hosts interact, as major services with substantial client
populations are typically better managed. As such, malware interacting with the
controller site should generate a noticeable increase in the number of interactions
with the controller’s subnet in that window of time.

O2. We expect that the multiple instances of the malware communication to the con-
troller site would be syntactically similar to each other, since the malware in-
stances are communicating using the same protocol, and likely to be receiving
or responding to similar commands.

O3. In the case of platform-dependent malware, the malware communications to the
controller site will involve internal hosts all having the same host platform.

Using these observations, we have assembled the aggregation functions described in
Section 3 into an algorithm FindSuspiciousAggregates to identify such malware infec-
tions, shown in Figure 1. The input to this function is a set Λ of traffic records observed
in a fixed time interval (e.g., one hour) at the border of the network, and a set Λpast of
records previously observed at the border of the network. FindSuspiciousAggregates
assembles and returns (in line 108) a set SuspiciousAggregates comprised of suspi-
cious aggregates, where each aggregate is a set of internal hosts (IP addresses) that is
suspected of being infected by malware.

FindSuspiciousAggregates first exploits observation O1, using ByDestτ from
Section 3.1 to find suspicious external subnets SuspiciousSubnets responsible for no-
ticeably greater communication with the monitored network than in the past, and to
find aggregates {Aggi}1≤i≤numAggs, each of which includes internal hosts that inter-
acted with one or more of these subnets. In line with observation O2, each aggregate is
tested in line 105 to determine if distinct hosts in the aggregate communicate with sus-
picious subnets using similar payload. Finally, as motivated by observation O3, for each
aggregate that has survived these tests, the platforms of the hosts in the aggregate are
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FindSuspiciousAggregates(Λ, Λpast)

100: SuspiciousAggregates ← ∅
101: (SuspiciousSubnets, numAggs, {Aggi}1≤i≤numAggs) ← ByDestτ (Λ, Λpast)

/∗ Form aggregates by external subnet ∗/
102: for i = 1 . . . numAggs do
103: Λi ← {λ ∈ Λ : λ.internal ∈ Aggi} /∗ Traffic from hosts in Aggi ∗/
104: Λsusp

i ← {λ ∈ Λi : λ.external ∈ SuspiciousSubnets}
/∗ Traffic from hosts in Aggi to suspicious subnets ∗/

105: if ByPayloadδEd (Λsusp
i ) > 0.3 then

/∗ Keep if traffic to same external subnet is self-similar ∗/
106: if ByPlatform(Λsusp

i ) > 0.9 then
/∗ Keep if most of aggregate consists of one platform ∗/

107: SuspiciousAggregates ← SuspiciousAggregates ∪ {Aggi}
108: return SuspiciousAggregates

Fig. 1. The function used to find suspicious aggregates in the example construction given in
Section 4. ByDestτ (line 101), ByPayloadδEd (line 105), and ByPlatform (line 106) are defined
in Sections 3.1, 3.2 and 3.3, respectively.

inferred using ByPlatform and, if the aggregate is adequately homogenous (line 106),
then it is added to SuspiciousAggregates (line 107).

There are numerous constants in Figure 1 that we have chosen on the basis of our
evaluation that we will present in Section 5. These constants include τ = 90% or 95%
for ByDestτ , 0.3 in line 105 and 0.9 in line 106. In addition, as we will describe in
Section 5, the data on which we perform our evaluation includes 64 bytes of payload
per record λ, for which we found δEd = 15 to be an effective value. However, we
emphasize that all of these constants can be adjusted in order to make this configuration
of TĀMD more conservative or liberal in its selection of suspicious aggregates, and we
plan to continue evaluation of the alternatives in ongoing work. That said, in Section 5,
we show that with traffic generated from real spyware and bot instances, and traces
from real bots captured in a honeynet, this configuration of TĀMD was able to reliably
extract malware traffic from all traffic passing the edge of a university network, while
the number of other aggregates reported is very low. This reliability is achieved even
in tests where the number of simulated infected hosts comprise only about 0.0097% of
the total number of internal hosts in the network, calculated as the maximum number of
internal IP addresses observed communicating in any one hour period during our data
collection (see Section 5), which was over 33,000.

5 Evaluation

We present an evaluation of the particular configuration of TĀMD described in Sec-
tion 4, using traffic from real spyware and bot instances, which are overlaid onto flow
records recorded at the edge of a campus network. The performance of TĀMD as ob-
served in this evaluation is described in Appendix C.
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5.1 Data Collection

Our network traffic traces were obtained from the edge routers on the Carnegie Mel-
lon University campus network, which consists of two /16 subnets. The packets are
organized into bi-directional flow records by Argus (Audit Record Generation and Uti-
lization System, http://www.qosient.com/argus), which is a real time flow
monitor based on the RTFM flow model [5, 16]. Argus inspects each packet and groups
together those with the same attribute values into one bi-directional record. In partic-
ular, TCP and UDP flows are identified by the 5-tuple (source IP address, destination
IP address, source port, destination port, protocol)2, and packets in both directions are
recorded as a summary of the communication, namely, an Argus flow record.

Table 1. Extracted Flow Fields

IP Header Transport Header Flow Attribute
Source IP Source Port Byte Count
Destination IP Destination Port Packet Count
Protocol TCP Sequence Number Payload (64 bytes)
TTL TCP Window Size

The fields extracted
from Argus records are
listed in Table 1. The rate
of the traffic from the
edge of our campus net-
work is about 5000 flow
records per second. The
traces were collected for
three weeks in November and December 2007. In our evaluation, we focused on TCP
and UDP traffic.

We also obtained network traffic traces for several malware. The malware traces used
for testing are grouped into two sets, Class-I and Class-II, as described below.

Class-I Traces. We obtained four instances of malware from the internet: Bagle, IR-
Cbot, Mybot and SDbot, and collected their traffic by infecting virtual machines hosts
with each malware. The virtual hosts were all running the Windows XP Professional
operating system with the same VMWare image file. Each run of traffic collection is
one hour long, and includes the communications from eight instances of Bagle, three
instances of IRCbot, five instances of Mybot, or five instances of SDbot. These num-
bers of instances were chosen to represent a very small fraction of the total campus
hosts, specifically at most 0.0097% based upon the number of campus hosts observed
sending traffic in the busiest hour, which has over 33,000 distinct IP addresses. The
characteristics of these malware are described in Appendix A.

For testing, we overlaid flows from these malware instances onto one hour of our
recorded campus network traffic, and assigned the malware traffic to originate from
randomly selected internal hosts observed to be active during that hour. This makes our
testing scenario much more realistic, since the internal hosts to be identified still exhibit
their normal connection patterns, in addition to subtle malware activities.

Class-II Traces. We also obtained network traces of botnets gathered from honeynets,
including an IRC-based Spybot, a HTTP-based botnet (similar to the Bobax worm3),

2 Since Argus records are bi-directional, the source and destination IP addresses are swappable
in the logic that matches packets to flows. However, the source IP address in the record is set
to the IP address of the host that initiated the connection.

3 http://www.secureworks.com/research/threats/bobax/
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and a large IRC botnet captured in the wild. The Spybot trace contains communications
from four bots for the duration of 32 minutes; the HTTP-bot trace contains communi-
cations from four bots over the course of three hours; and the large botnet trace contains
traffic from more than three hundred bots over seven minutes.

These botnet traces were then overlaid onto each hour of our recorded campus traffic,
in the same way as the Class-I traces. For the trace that spans multiple contiguous hours,
i.e., the HTTP botnet trace, we overlaid it onto the same number of contiguous hours
in the campus network traffic, performed analysis on each of the hours “covered” by
the malware trace, and reported the hour that TĀMD detected the malware aggregate.
This time window was then shifted by one hour, and the experiment repeated until we
reached the end date of our campus traffic collection.

In our initial tests, we found that these malware-infected hosts were obscured by
certain unknown hosts with highly unusual behavior, which turned out to be PlanetLab
(http://www.planet-lab.org) and Tor (http://tor.eff.org) nodes.
The experience of identifying these hosts and their exclusion from our dataset for the
experiments reported in Section 5.2 is described in Appendix B. In practice, a system
administrator can remove such hosts known for unusual behavior prior to performing
analysis using TĀMD.

5.2 Detecting Malware

As described in Section 5.1, TĀMD was given all TCP and UDP traffic collected at the
edge of our university network in hourly batches, overlaid with malware traffic assigned
to randomly selected internal hosts. The same analysis steps were repeated for each hour
over three weeks in November and December 2007.

The granularity of external destinations was set to be /24 subnets. While the commu-
nication records from the current hour were given to FindSuspiciousAggregates as Λ,
the set Λpast was selected from communication records in the past (specifically, from
the beginning of our traffic collection dating to the first week of September 2007) that
represented the general trend and the periodicity in the traffic. Specifically, Λpast con-
sisted of traffic from, in reference to the time frame for Λ, (i) the same hour from the
same days of the week, (ii) the same hour from the same days of the month, (iii) the
same hour from the previous two days, and (iv) the previous two hours. For example,
if Λ consists of traffic from 2 to 3 PM on Wednesday, November 28th, then Λpast will
include traffic from 2 to 3 PM every Wednesday before that, from 2 to 3 PM in the
previous two days (November 27th and 26th), and from 12 to 2 PM on November 28th.

In all experiments, TĀMD was able to identify all the infected hosts (with the excep-
tion of the Class-II large IRC trace, as described later) while the number of additional
aggregates reported was only about 1.23 per hour on average. For the Class-II HTTP-
botnet trace that spans multiple hours, TĀMD always detected the infected hosts in the
very first hour. For the case of the Class-II large IRC botnet trace, which contains 340
infected bots, TĀMD was able to identify 87.5% of the bots on average, and these bots
were all grouped in a single aggregate. We suspect that the reason not every bot in the
botnet was detected is due to the randomness in our choice of selected internal hosts
to which the malware traffic was assigned, such that a selected internal host that was
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Malware ByDestτ ByPayloadδEd ByPlatform
traces (line 101) (line 105) (line 106)

Class-I
Bagle 47.46 (± 23.13) 4.19 (± 2.34) 2.55 (± 1.33)

IRCbot 35.10 (± 20.51) 2.74 (± 1.41) 1.98 (± 0.98)
Mybot 45.60 (± 25.10) 3.19 (± 1.76) 2.13 (± 1.09)
SDbot 52.15 (± 43.87) 3.55 (± 1.88) 2.34 (± 1.16)

Class-II
Spybot 39.18 (± 22.31) 2.95 (± 1.44) 2.04 (± 0.92)

HTTP bot 53.97 (± 26.54) 3.31 (± 1.91) 2.22 (± 1.21)
Large IRC bot 44.54 (± 16.16) 4.39 (± 2.75) 2.39 (± 1.32)

ByDest ByPayload ByPlatform
0

10

20

30

40

50

60

Aggregation Phases

N
um

be
r 

of
 A

gg
re

ga
te

s

Bagle
IRCbot
Mybot
SDbot
Spybot
HTTP bot
Large IRC bot

Fig. 2. Mean number of aggregates (± std. dev.) remaining after each function in Figure 1

also contacting other suspicious subnets (not relevant to the botnet) is likely to bias the
dimension reduction and clustering algorithms.

Figure 2 shows for each malware experiment (the rows), the number of aggregates
remaining after applying each aggregation function (the columns), averaged over all
test hours. The number of aggregates is reduced after each aggregation function, as they
become more refined to satisfy multiple characteristics. The single aggregate consisting
solely of infected hosts was always identified, in every malware experiment. As shown
in the figure, even for homogeneous networks where the majority of internal hosts are of
the same platform, applying ByDestτ and ByPayloadδEd would still yield good results.

5.3 Unknown Aggregates

As indicated in Figure 2, our methodology detected a small number of unknown ag-
gregates (about 1.23 per hour, on average) in addition to the one aggregate of infected
hosts that we overlaid on the trace. We found that some of these same unknown aggre-
gates regularly appeared for that hour of input data, across different malware experi-
ments. Further investigation based on the 64 bytes of flow payload available to us, port
numbers, and protocol field (for privacy reasons, the IP addresses were anonymized),
showed that these aggregates included NetBIOS messages on port 137, DNS name
server queries, SMTP connection timeout messages, and advertising-related HTTP re-
quests; several of these suggest that additional investigation may be warranted. Oth-
ers included connections to online game servers and large flows over high-order ports,
which we suspect to be peer-to-peer (P2P) transfers. All of these aggregates consisted
of internal hosts contacting rare sites, and often consisted of less than five hosts sharing
one or two common destination subnets.

In theory, a group of internal hosts visiting a new popular website (i.e., the “slashdot”
effect) could also form an aggregate. However, it is unlikely that all of the hosts would
come from the same platform, and in our experiments, we believe we saw very few
such aggregates. We thus believe that TĀMD is a useful data reduction tool for malware
identification.
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6 Discussion and Ongoing Work

Approaches by which malware writers might attempt to avoid detection by our tech-
niques include encrypting their malware traffic, so that our payload comparisons will
be ineffective. To accommodate encryption, our techniques can be generalized to define
encrypted content (which itself is generally easy to detect) as “similar”; we are explor-
ing the impact of this adaptation in ongoing work. Malware writers could go further
and have their malware communicate steganographically, though at the cost of greater
sophistication and lower bandwidth. Detecting steganographic communication is itself
an active area of research (e.g., [31]) from which TĀMD could benefit.

A second way that malware writers could try to avoid detection by TĀMD is with al-
ternative botnet architectures. Although the vast majority of spyware and botnets found
today use a centralized IRC command-and-control server, other botnet architectures
have been reported, such as P2P botnets (Phatbot4, Trojan.Peacomm bot [12], Sinit P2P
trojan5) or HTTP-based botnets (Clickbot.A [9]). Still others have been proposed, such
as hybrid P2P and centralized botnets [41, 43].

Even among these alternative architectures, a large number exhibit characteristics
that we believe should be detectable via FindSuspiciousAggregates in Section 4. For
example, Trojan.Peacomm bots, while using a P2P network to transfer addresses of
compromised web servers among them, still connect to these web servers to download
malicious executables for sending spam or performing DoS attacks. This activity of col-
lectively contacting web servers matches the behavior that our techniques successfully
detected in our evaluations. The same detection method can also be applied to HTTP-
based bots, such as Clickbot.A [9], which commit click frauds by having bots connect
to a compromised web server for a list of websites and search keywords, or for a URL to
download updated bot versions. Vogt et al. [41] suggested a “super-botnet”, where the
botnet is composed of individual smaller centralized botnets, and the controllers from
each smaller botnet peer together in a P2P network. Since the individual smaller botnets
still use a centralized architecture, this should be still be detectable via our techniques.
Wang et al. [43] proposed a hybrid P2P botnet where each bot maintains its own peer
list and polls other bots periodically for new commands. However, in order to monitor
the IP address and resources of each individual bot, the botnet supports a command
by which the botmaster can solicit all bots to report to a specific compromised server.
Again, this behavior should be detectable by FindSuspiciousAggregates.

That said, some P2P bots avoid contacting a common server for the transfer of exe-
cutables or other tasks, such as Phatbot and the Sinit trojan. While Phatbots find peers
by registering themselves as Gnutella clients, the Sinit trojan sends out random probes
for peer discovery. In both cases, forming aggregates based on payload similarity should
remain effective, provided that similarity is generalized as described above to accom-
modate encrypted traffic (which Phatbot utilizes). Similarly, platform-based aggrega-
tion should also be effective, as both are platform-dependent. We are evaluating these
directions in ongoing work, as well as alternative aggregation methods to help identify
these types of malware.

4 See http://www.secureworks.com/research/threats/phatbot
5 See http://www.secureworks.com/research/threats/sinit
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7 Conclusion

In this paper, we presented TĀMD, a system that identifies hosts within a network that
are possibly infected by stealthy malware by finding those that share common and un-
usual network communications. TĀMD employs three aggregation functions to group
hosts based on the following characteristics. First, the destination aggregation func-
tion, ByDestτ , forms aggregates of internal hosts that contact the same combination of
busier-than-usual external destinations. A binary vector is formed for each internal host,
with each dimension representing one of the selected external destinations. The vectors
are processed by PCA for dimension reduction, and clustered by K-means clustering.
New clusters are selected as those that do not conform to preceding communication
patterns. Second, the payload aggregation function, ByPayloadδEd , identifies communi-
cations with similar payloads in terms of a type of edit distance. This is done by first
embedding the payload strings into vectors in L1 space, and then finding close vectors
by an approximate nearest-neighbor algorithm. Third, the platform aggregation func-
tion, ByPlatform, forms aggregates that involve hosts running on common platforms,
as inferred using TTL values or platform-specific sites to which they connect.

We detailed a configuration of TĀMD that employs these functions in combination to
identify platform-dependent malware infections that report to common sites. A common
site might be an IRC channel for receiving commands, a public webserver for down-
loading binaries, a denial-of-service victim they are instructed to attack, or a database
server for uploading stolen information, as is typical of most bots and spyware. Our
experiments showed that, with traffic generated from real spyware and bot instances,
this configuration of TĀMD reliably extracted malware traffic from all traffic passing
the edge of a university network, while the number of other aggregates reported is very
low. This is achieved even in tests where the number of simulated infected hosts com-
prised only about 0.0097% of over 33,000 internal hosts in the network.
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A Class-I Malware Instances

For our testing described in Section 5, traffic from four malware instances was collected
using virtual machine hosts infected with each malware. The virtual hosts were all run-
ning the Windows XP Professional operating system with the same VMWare image
file. Each run of traffic collection is one hour long.

Bagle6 is spyware that, on execution, runs as a background process and attempts
to download other malicious executables from various sites, while generating pop-up
windows and hijacking the web browser to advertising websites. As with other types of
spyware and adware, Bagle initiates connections to numerous destinations that are set
up to exclusively host advertisements or other malicious content. We collected Bagle
traffic by simultaneously running eight instances of Windows XP virtual machine hosts
infected with Bagle.

IRCbot7 is a backdoor trojan that connects to an IRC server and waits for commands
from the attacker. In addition, after successfully connecting to the command-and-control
center, the bot downloads an update executable from a designated webserver, and goes
on to scan the local /16 subnet attacking other machines with the LSASS vulnerability
on port 4458 and the NetBIOS vulnerability on port 1399. We collected traffic from two
instances of IRCbot running on two Windows XP virtual machine hosts.

Mybot10 is spyware, a worm, and a bot that connects to an IRC server to wait for
commands, and also records keystrokes and steals other personal information on the
victim host. This malware is especially subtle in its communications. When it is only
waiting for commands on the IRC server, the bot initiates one connection every 90 sec-
onds, in the form of IRC PING/PONG messages. In the hour of our traffic collection,
Mybot simply waited for commands on the IRC channel, and its only outbound connec-
tions were these PING/PONG messages. We collected traffic for five Mybot instances.

SDbot11 is a trojan and a bot that opens a back door to connect to an IRC server. Sim-
ilar to Mybot, when it is waiting for commands from the attacker, SDbot only makes
outbound connections once every 90 seconds, in the form of IRC PING/PONG mes-
sages. We collected SDbot traffic from simultaneously running five instances of Win-
dows XP virtual machine hosts infected with this malware.

B Outlier Hosts

In the early stages of our analysis described in Section 5, we found that often TĀMD

failed to detect the malware-laden hosts, but rather identified other internal hosts as

6 http://www.trendmicro.com/vinfo/virusencyclo
7 http://www.symantec.com/enterprise/security response/
threatexplorer/threats.jsp

8 http://www.microsoft.com/technet/security/Bulletin/MS04-044.
mspx

9 http://msdn2.microsoft.com/en-us/library/ms913275.aspx
10 http://www.sophos.com/security/analyses/w32rbotxf.html
11 http://www.symantec.com/enterprise/security response/
threatexplorer/threats.jsp
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more symptomatic of malware. Upon further inspection, we identified the internal hosts
that resulted in these false alarms: PlanetLab nodes (http://www.planet-lab.
org) and a Tor node (http://tor.eff.org).
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Fig. 3. Clustering results after dimension reduction by
PCA. The three outliers were found to be PlanetLab nodes.

In the case of PlanetLab
nodes, we noticed that dur-
ing the destination aggregation
function, the vectors after PCA
analysis often had very low di-
mensionality, e.g., two, where
two principal components were
able to cover over 90% of the
data variance. Clustering these
vectors resulted in a few out-
liers forming their own individ-
ual clusters, unlike any of the
other vectors in Λ (i.e., the “new
vectors”), or even those from
Λpast (the “old vectors”). This is
shown in Figure 3. The two axes
correspond to the top two prin-
cipal components on which the
original data is projected. The
outliers were found to be PlanetLab nodes, which, being a development and testing
platform, exhibit behavior deviating from other hosts. Their existence was also the rea-
son why PCA analysis was able to reduce the vector dimensionality down to only two,
since PlanetLab nodes’ behavior is so different from other hosts that only two principal
components were needed to capture most of the data variance.

In another example from experiments involving the Bagle trojan spyware, we no-
ticed that even though TĀMD was able to form a final aggregate containing all spyware
traffic and spyware traffic only, at times it also combined another unknown host into
the spyware-hosts aggregate, both in the ByDest and the ByPayload functions. Similar
investigations revealed that this additional node is a Tor router inside the campus net-
work. Tor offers online anonymity by routing packets over random routes between Tor
servers so that the source and destination of the packet is obfuscated. Because the traffic
comes from different anonymous hosts, it is possible that, even though the Tor router
itself is not infected, another host routing traffic through the Tor node may be a spyware
victim.

For this work, we removed PlanetLab and Tor nodes from our analysis.

C Performance

The top half of Table 2 shows the run times in seconds for each aggregation func-
tion and for each malware instance, averaged over the week’s worth of traffic (in one-
hour intervals) we used to performed our experiments. In our present implementation
of TĀMD, ByDestτ is implemented in Matlab, and ByPayloadδEd and ByPlatform are
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Table 2. Mean run times of each phase in seconds of algorithm in Figure 1 and means of measures
impacting performance (± std. dev.)

Malware ByDestτ ByPayloadδEd Total time Size of Internal
traces (line 101) and ByPlatform SuspiciousSubnets hosts contacting

(lines 105, 106) SuspiciousSubnets

Class-I
Bagle 79.48 (± 264.54) 14.08 (± 18.07) 93.48 (± 271.51) 701.87 (± 596.78) 754.73 (± 812.75)

IRCBot 94.67 (± 350.13) 20.19 (± 16.78) 114.86 (± 356.72) 927.23 (± 561.33) 742.13 (± 836.55)
Mybot 63.82 (± 177.34) 10.96 (± 15.28) 70.93 (± 183.43) 686.03 (± 565.11) 728.45 (± 708.65)
SDbot 102.34 (± 355.25) 10.21 (± 19.51) 112.55 (± 359.23) 749.01 (± 577.49) 952.96 (± 1191.66)

Class-II
Spybot 86.30 (± 276.81) 63.42 (± 38.56) 151.15 (± 286.99) 850.14 (± 609.19) 777.71 (± 848.43)

HTTP bot 83.12 (± 278.76) 15.75 (± 20.62) 99.31 (± 287.11) 697.36 (± 609.15) 776.76 (± 848.43)
Large IRC Bot 110.64 (± 253.78) 46.00 (± 34.78) 156.64 (± 260.42) 760.83 (± 548.48) 1104.42 (± 799.58)

implemented in C. For the numbers reported in Table 2, ByDestτ was run on a PC with
a Pentium IV 3.2 GHz processor and 3 GB of RAM, and ByPayloadδEd and ByPlatform
were run on a Dell PowerEdge server with dual core 3 GHz processors and 4 GB of
RAM.

The running times of the aggregation functions depend on several factors, including
the number of external destinations identified as suspicious (i.e., SuspiciousSubnets as
computed by ByDestτ ) and the number of flows to those suspicious destinations; av-
erages for these numbers are also listed in Table 2. The amount of traffic in Λpast is
especially critical to the performance of ByDestτ (Λ, Λpast), since it accesses signif-
icant amounts of historical data (i.e., Λpast) to define the “normal” behavior for this
network. While the implementation of TĀMD is not yet optimized, retrieving historical
data from the database contributed to the majority of the slowdown. This problem can
be alleviated in the future by performing these calculations in advance and storing them
statically, only updating incrementally as more data is collected.
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Abstract. Large scale internet data analysis often concentrates on sta-
tistical measures for volume properties or is focused on the epidemiology
of specific malcodes. We have developed a high level abstraction that we
call the contact surface that allows us to visualize internet scale connec-
tion behaviours across the border of a monitored network. The contact
surface is a time series of contact lines, each line plotting the number of
outside sources that contact a specific number of inside hosts in a given
time interval (typically an hour). In general, the lines follow a power law
in the mid range with distinct outliers at the one destination per source
and the hundreds to thousands of destinations per source ends. During
some periods, however, the lines are perturbed with what appears to be
a persistent bump or waterfall. We have studied two such episodes, one
that persisted from at least January 2003 until August 2003 and another
that appeared on February 11, 2004 and lasted until May 31, 2004. The
exact cause of the former is unknown, however the later appears to have
been caused by the Welchia.B worm. Similar activities are currently be-
ing reported by other observers. We hypothesize that the cause of the
perturbation is low frequency periodic scanning by a small population
of hosts scanning at the same rate. We have created simulations to ex-
plore the range of activities that might be observable and find reasonable
agreement with the observed phenomena.

1 Introduction

In 2003 and 2004, we had access to NetFlow data from the border of a compos-
ite network (multiple, disjoint network blocks) that covered address space that
was equivalent to multiple /8s in aggregate. The network is sparsely populated
but contains several million active hosts. As part of the preliminary efforts to
investigate schemes for detecting coordinated distributed scans, we became in-
terested in “typical” host to host connection behavior. Many of the papers that
examine the characteristics of network traffic focus on packet properties such
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as counts of hosts, protocols, port usage, payload size and characterization, etc.
Other papers, inspired by work in social networks attempt to map communica-
tions patterns on the physical structure of the internet, overlooking the fact that
from the standpoint of an IP layer user, the internet is flat and fully connected.

Our fundamental question was essentially “Is there any regularity in cross
border connection behaviour?” We were interested in determining how many
of the outside hosts generating traffic into the network connect to (or attempt
connections to) one service, two services, three services, etc. In the beginning, we
were concerned only with the quantitative nature of the connecting populations
and not with the identity of the participants. In this case, the initial investigation
was restricted to TCP and a service was defined as the combination of a host IP
address and a service port.

One of the tools that we used for studying this traffic was a visual representa-
tion that we call a contact surface. This is a three dimensional time series of lines
in which each line shows the number of outside sources, Y vertical, that contact
a specific number of internal addresses (or address-service combinations1) on the
inside of the network, X horizontal. Time is into the page, Z. Because of the
large dynamic range ov values represented, we present the contact surface as a
log-log plot. The lines represent hourly flows and the shading separates days of
the week.

The first period for which we developed a contact surface was a week of
data from January, 2003. This data manifested a “bump” or standing wave
(perturbation) in the surface as seen in Figure 1. This phenomenon was observed
from January 2003, the earliest data available to us, until mid August 2003 when
it abruptly disappeared. A similar phenomena appeared in mid February 2004
and persisted through the end of May, 2004. We have been told that similar
phenomena are present in recent data, but we lack current access to the data
source.

To a first approximation in the absence of a disturbance, the data for each
hour can be represented as a straight line of the form log(y) = A+ B log(x) and
we plot the x and y values on logarithmic scales. Figure 2a shows an example
of the undisturbed contact surface while Figure 2b shows the regression line
superimposed on several aggregated lines. These are discussed in more detail is
Section 2.

This paper discusses our present views of this phenomenon. Section 2 discusses
the initial observations and analysis with separate discussions of the 2003 and
2004 perturbations. We hypothesize that this phenomenon was related to the ap-
pearance of scanning worms that exhibited particular timing characteristics and
consider the minimum amount of address space that must be monitored in order
to observe this phenomenon in Section 3. Recent observations of similar pertur-
bations resurrected our interest in the wave feature and in the visualizations.

1 An address-service combination is a unique combination of an IP address and a
service. For TCP and UDP a service is the combination of the protocol and the
destination port. For other protocols, the notion may vary with the protocol, but
these are sufficiently rare so we can assume a single service per protocol.
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Fig. 1. Contact surface for January 11-18, 2003. Vertical axis is count of outside
sources. Horizontal axis is count of inside services targeted by each outside source.
Time is into the page.

Although we do not have access currently to either the historical or current data
from this source, we have developed a simulation that provides a plausible ex-
planation for the observed phenomena. Described in Section 4, this allows us to
vary the background and perturbing parameters to examine the effects of alter-
ing the perturbing population, its probe rate, the size of the monitored network
and the percentage of the probes that are observed. Related work is presented
in Section 5 and our conclusions and future plans in Section 6.

2 Observed Phenomenon

NetFlow traffic from the border routers of a large ISP was collected using the
SiLK [1] collection system. The network was heterogeneous and globally dis-
tributed, with routers at multiple locations within the United States and in sev-
eral other countries. The majority of traffic is generated within the United States.
The network consists of a number of discontinuous address blocks assigned to
subcomponents of the ISP. Asymmetric routing policies were commonly used, so
that traffic from host A to host B does not cross the border via the same router
used for traffic from host B to host A. In any event, NetFlow is unidirectional and
the two sides of a bidirectional connection are collected and stored separately.
Both incoming and outgoing flow traffic was collected, but matching of forward
and reverse flows is not usually done. Traffic that was sent to the null interface
on the router as specified by an access control list (ACL) was also collected,
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however it was not analyzed for this paper. Null routed traffic consists primarily
of traffic destined for TCP or UDP ports known to contain vulnerabilities.

The SiLK tools2 [1] were used for the collection system. SiLK stores a subset of
the information contained in the NetFlow records: source IP address, destination
IP address, source port, destination port, protocol, number of packets, number
of bytes, start time and duration of each flow. The records are compacted to use
the minimum number of bits necessary to represent the recorded information
and are organized into hourly files with each hour being partitioned in ways
that make many searches more efficient. The archive data is unsorted and serial
search is required to extract all records matching a given search criteria within
a given hour.

Network traffic from January 2003 through early June 2004 was analyzed.
We developed a variety of visualizations to help us understand this data. One
of these is the contact line, which shows the number of external hosts that
contacted a specific number of internal hosts during a specified time interval.
Figure 1 demonstrates the contact surface that was generated by processing
only incoming, routed3, TCP flows over one week in September 2003. Each hour
of the data results in an hourly contact line and the 168 hourly lines are plotted
as a surface. The X and Y axes are plotted on log scales, while the Z axis, time,
is linear.

The initial analysis was computationally intensive, involving creating a text
file for each hour that contains only the source and destination IP addresses for
the incoming routed TCP data collected at the border router (so that source
IP addresses are always external to the monitored network while destination
IP addresses are always internal to the monitored network, regardless of who
initiated the session). The result was sorted by source IP and then destination
IP, passing the sorted data through uniq to remove duplicates, using cut to
remove the destination IPs leaving only the source, and using uniq -c to count
the number of destinations associated with each source. Using cut again to
remove the sources, sorting the counts and, again, using uniq -c, counting the
number of occurrences of each value. Applied to data from one hour, this gives a
single line, which we call a contact line. Plotting a time series of contact lines as
a pseudo three dimensional plot gives a contact surface. These lines and surfaces
form the underlying basis for our analyses.

This contact surface (see Figure 2a) has several interesting properties. The
first is a persistent linear relationship between the log(x) and log(y) values.
This is examined in more depth later. The second is a distinct diurnal pattern,
particularly observable at x = 2. This demonstrates that traffic fluctuates in a
predictable pattern with the time of day. (We note that this pattern is much
more distinctive for x = 2 than for x = 1 because the graph was plotted on a log

2 SiLK stands for System for Internet Level Knowledge, and is named in honour of its
creator, the late Suresh L. Konda.

3 Our data was divided into two partitions: packets that were routed and packets that
were dropped due to access control restrictions (e.g., packets destined for particular
ports were dropped).
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Fig. 2. The contact surface for a week in September of 2003 and its regression line.
The y-axis is the number of outside hosts that contacted x inside hosts. The z-axis is
time.

scale and so the fluctuations at x = 1 were not great enough to be observable
at that resolution.) The third is a substantial jump in the number of exter-
nal hosts that contact only one host per hour when compared to the numbers
that contact two or more hosts per hour. While the number of hosts making 2
contacts per hour is about twice the number making 3 contacts per hour, the
number making 1 contact per hour is ten times the number making 2 contacts
per hour. The large amount of singleton traffic is also seen in traffic from other
sources (e.g.Figure 11). The nature and sources of this traffic are the subject of
a current investigation. The fourth is the spreading or flat area that occurs for
a small number of sources that contact hundreds to hundreds of thousands of
destinations per hour. Sources for this area are mostly high volume scanners.

The straight line in the log / log scale exhibits a power-law relationship. We fit
a regression line to the week’s data shown in Figure 2a. The line has the form y =
e11.763367 ×x−1.957496. in the x, y reference framework or approximately log(y) =
5.11−1.96 log(x) in the log / log framework. Figure 2b, shows the regression line
superimposed on the aggregated contact lines from the five weekdays from Figure
2a. The outliers at count 1 and the spreading at high counts are easily seen. We
were somewhat surprised to find a power law relationship here, but note that
they describe many other internet traffic characteristics4. Faloutsos et al. [2]
have observed this relationship with regards to out-degree and hop-count.

2.1 The 2003 Disturbance

Our first experience with this traffic was from an earlier time period, the week
of January 12 – 18, 2003. The contact surface for this week is shown in Figure 1.
This traffic exhibits all of the general characteristics discussed above, except that
the one contact outlier is less extreme. In addition, it has an additional property,
a perturbation that appears as a“bump” or “waterfall.” This perturbation was
present across the entire week of data. We examined additional data to determine
4 It has been observed that everything follows a power law if you graph it with a fat

enough marker.
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the duration of the perturbation. It was present in the earliest data we had for
January 2003. The perturbation was continuously present is all the samples that
we examined through early August 2003, however the shape of the wave changed
slightly and the 1 contact outlier grew to upwards of a million hosts per hour
in July. The perturbation disappeared on August 11, 2003. This is shown in
Figure 3a, where one week of data is provided, providing context surrounding
August 11.

Figure 3b focuses on the area of the perturbation, with only the Y axis shown
on a log scale. The graph shows that the perturbation (two different bumps) is
present for the four days previous to August 11, and that it has disappeared
for the four days subsequent to August 11, 2003. The largest deviation (or
bump) is the second one, which occurs at roughly 20 to 35 external source
IP addresses each contacting approximately 150 to 350 internal destination IP
addresses per hour.

This traffic was examined further by extracting the source IP addresses that
contacted between 150 and 350 destination IP addresses per hour. We discovered
that the bulk of the traffic in this region came form three /8 networks, two in
the Asian registry, one in the Latin American registry. This distribution was
present in each of the weekly samples that we analyzed with roughly constant
proportions. The traffic was largely untargeted TCP SYN packets (SYN packets
directed at hosts or services that did not exist) destined for port 80. We examined
the target distribution for a week in July and found that the targets were not
randomly distributed throughout the monitored network. 49% of the flows for
this week went to one of the 60 /16s that were being monitored within a single
/8 (the remaining 196 /16s are not part of the monitored network), with 14%
going to a single /16.
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Fig. 3. Wave disappearance details, contact surface and selected lines The y-axis is the
number of outside hosts that contacted x internal hosts. The z-axis represents August
9–14.

Given the consistency of this behavior over time, we speculated that the hump
was caused by coordinated activity that would exhibit regular temporal be-
haviour. We attempted to analyze the distribution of the interarrival times for
the flows, expecting to see a clustering around the interval (24 seconds for 150
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hosts) that would account for the observations if only the monitored network
was being targeted.

Our analysis did not support our original hypothesis. The largest cluster (with
approximately 5,000,000 observations) shows less than 1 second between suc-
cessive flows. The detailed analysis did reveal another interesting structure, a
scalloping that occurred at regular intervals from about 15 to 70 seconds, after
which the decrease becomes more linear (on a log-linear scale). This scalloping
indicates a periodic behaviour from some of the sources that we were unable to
explain at the time.

2.2 The 2004 Disturbance

In February of 2004, a perturbation in the contact surface was again observed.
It started to reappear on February 11, 2004. Figure 4a shows the average traffic
patterns for each day from Sunday, February 8, to Saturday, February 14, 2004.
The bump first increases in amplitude and then slides to the right during its
developmental phase. The number of sources detected peaks at around 50 at the
beginning of the period and at about 75 by the end, but the effects of the process
can be seen in terms of displacement of Monday / Tuesday baseline. The total
number of disturbing hosts involved would be the integral between the baseline
and the disturbed line and contains up to 1500 source IP addresses contacting
up to 100 or so destinations each. The disturbed behavior continues until June 1,
2004, when it abruptly disappears (see 4b). An examination of source addresses
during the disappearance, indicates that the activity ceased as the May 31 /
June 1 dividing line progressed around the world.

It is also interesting to note that Figures 4a and 4b display another disturbance
in the contact line, a small spike at 150 destinations per hour. We did not examine
its sources during our investigation, but, as a result of our simulations, believe
that we now know its cause. This will be discussed further in Section 4.1.

There are some differences in the behavior between this occurrence and the
previous perturbation. As shown in Figure 5, this time the hump is more pro-
nounced, and there is only one. Both perturbations were caused by traffic to port
80, primarily SYN-only flows. Two of the three /8 networks that had the most

Fig. 4. 2004 perturbation appearance (February) and disappearance (June) details.
The y-axis is the number of outside hosts that contacted x internal hosts.
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Fig. 5. Contact Surface for April 19 – 25, 2004. The y-axis is the number of external
hosts that contacted x internals hosts. The z axis represents time.

sources in the first perturbation appear as the primary contributors to the sec-
ond perturbation. The third /8 network also contains a large number of sources,
however is not in the top three contributing /8 networks. The destination sets,
however, were different, with 23% of the traffic targeting a different /8 network
from the first perturbation.

3 Hypotheses

At the time this type of perturbation was first observed, the authors were in-
terested in scanning activity. The initial contact surface graph displayed the
connection behaviour of the entire monitored network. We hoped to determine
whether scanning activity could be easily separated from legitimate network con-
nections. We expected to find a large number of external hosts each of whom
contacted a small number of internal hosts, and that this would represent legit-
imate traffic. We also expected that there would be a small number of external
hosts who contacted a large number of internal hosts, and that this would rep-
resent scanning activity.

As we note in Section 2, what was actually observed was a power law rela-
tionship in the count of external hosts that contact a given number of internal
addresses per hour in the central portion of the contact surface with outliers
at the one destination per hour end of the line and a high degree of spreading
at small source count end of the line. In retrospect, this linear relationship is
not surprising. However, the perturbation was not expected and is particularly
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interesting because of its variable nature — consistently present or absence for
months at a time, with sudden onset and disappearance.

The perturbation was present in the earliest data that we analyzed (January
2003). The perturbation persisted until August 11, 2003, when it abruptly dis-
appeared. Blaster was released on August 11, 2003, and this might be related
to the change in behavior that we observed. At first, we thought Blaster might
have caused data loss at our sensors, suppressing the data that gave rise to the
perturbation. The nature of NetFlow collection using routers is such that sub-
stantial data can be lost under heavy load as NetFlow is sacrificed to routing
under router overload. In addition, NetFlow is transmitted to the collection point
using UDP which also suffers under network load. Had the losses been signifi-
cant, the entire surface would have been displaced downward and, we suspect,
the perturbation reduced, but not eliminated. It is also possible that the sources
of the perturbation were taken off line by Blaster. If that were the case, we would
expect the systems to resume their previous activity when brought back on-line.
This did not happen. The most likely explanation is that the remote systems
were also infected with Blaster, which caused them to be taken off the network,
patched, and cleaned to remove all sources of malicious activity. We suspect that
this cleaning removed the cause of the unusual behavior observed at our mon-
itoring points and that the patching prevented the source from reestablishing
the behaviour. We suspect a scanning worm of some kind, possibly exploiting
a vulnerability in port 80 that was patched at the same time as the DCOM
vulnerability5 used by Blaster, but have not identified a specific candidate.

The 2004 perturbation appeared on 11 February and disappeared as June 1
arrived. In December of 2004, Alfred Huger of Symantec noted that the dates
of the appearance and disappearance of 2004 perturbation exactly matched the
onset and demise of the worm Welchia.B6. Welchia.B contained a “suicide” timer
that accounted for its demise along the dateline between May 31 and June 1.
We were able to persuade a colleague to examine a corpse of Welchia.B and
discovered that the main scanning loop of the worm contained a “sleep” system
call with a delay constant that appeared to account for the disturbance when the
scanning rate and the percentage of the total IPv4 address space being monitored
were taken into account.

At this point, we had a plausible explanation for our observations, but lacked a
confirmation. Not too long afterwards, we took other positions and subsequently
lost access to the data source, so that further analysis was not possible. In
2007, we learned from former colleagues that the perturbation phenomena had
reappeared. Development of code to visualize the contact surface is part of an
unrelated analysis project, and we decided to revisit the original problem to
refine our hypotheses and determine whether we could develop a simulation
that provided a plausible explanation for the earlier observations. Based on the

5 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
6 W32.Welchia.B.worm was a relatively minor threat, in the general scheme of

things. See http://www.symantec.com/security response/writeup.jsp?docid=
2004-021115-2540-99 for additional details.



The Contact Surface 237

earlier work, we developed several hypotheses that serve to focus the analyses
and simulations.

Hypothesis 1. The perturbation of the contact surface is caused by the presence
of persistent scanning behavior (such as would be exhibited by a worm-infected
host) with a fixed time delay between each scan probe. This delay is constant
across the infected population.

Note that this hypothesis implies a coordinated activity, however, the coordina-
tion may well be preprogrammed. All that is required is that each participant
scan at the same rate.

Hypothesis 2. The targets of the scanning are essentially random so that they
are not easily observed without a network telescope with an aperture that encom-
passes substantial address space (several /8s or more).

There is a tradeoff between the strength of the observed signal and the telescope
aperture. For example, a single source emitting 1 randomly addressed probe per
second would be seen about once every 4 minutes if the aperture is the equivalent
of a /8 while it would be seen about once every 10 days if the aperture is a
/24. If the scans are targeted so that the percentage of the total probes that
are intercepted is disproportionate to the address space monitored, the signal
strength increases.

We noted in Subsection 2.2 that we observed a small spike at 150 addresses
that was consistent over time. While we did not investigate that spike further
to determine the characteristics of the IP addresses generating the spike, we
believe that it was due to scanning activity from several sources whose targets
were largely within the monitored address space. This gives rise to an additional
hypothesis.

Hypothesis 3. Sharp spikes in the contact surface are due to a group of hosts
that all scan addresses within the monitored address space at a fixed rate.

Note that there are several limiting cases here. A small number of dropped
packets are equivalent to a scan that largely, but not completely, targets the
monitored address space. In addition, scans that target one or more complete
subnets and are carried out so rapidly that all addresses are probed within the
interval of the analysis (one hour in our case), will also generate spikes. If all
probes from all sources scanning full subnets are observed, the spike becomes
a point whose amplitude is the number of scanners and whose position on the
target count axis reflects the size of the scanned subnets.

In the next section, we explore these hypotheses using a combination of sim-
ulation and analysis of data from a /22 network that we have monitored for
several years.

4 Analysis and Simulation

The correlation between the onset and demise of Welchia.B and the 2004 pertur-
bation provided evidence that the observations could be due to regular
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behaviours of a small population of infected machines. The discovery of a timed
scanning loop in Welchia.B provided a mechanism for regular behaviour. We
decided to see if we could reproduce the observed perturbations in a controlled
manner. In order to do this, we needed to generate appropriate background
behaviour and perturb it according to our hypotheses. Because we were not ana-
lyzing flow data per se in constructing the contact surface, we can avoid the task
of simulating millions of individual hosts and concentrate on the essential char-
acteristics of the background traffic as seen in the contact surface. This admits
some simplifications.

Fig. 6. Base traffic simulation, 2D (6a) and 3D (6b) views, 4% of IPv4 monitored (12
/8s), 40% noise spread, 24 hours with no perturbations. Vertical axis is number of
outside addresses seen per hour. Horizontal axis is number of inside addresses targeted
per outside address. Time is into the page in the 3D case.

In Section 2, we noted that there is always an outlier at the 1 host per hour
portion of the fit. Far more outside hosts make single contacts than would be
predicted by the model. A similar phenomenon occurs at the other end of the
scale where a few (typically less than 5) hosts contact each of a very large num-
ber (thousands to hundreds of thousands) of destinations per hour. We believe
that, in the undisturbed (no perturbation) case, that the contact lines represent
three independent phenomena. The excess of single destination hosts represents
a very low frequency noise component. For about a year, we have been analyz-
ing NetFlow data from a local /22 network that is about 10% occupied. In a
typical hour, on the order of five thousand external sources each contact sin-
gle inside addresses. Extending the filtering period to a day gives an average of
about 62 thousand, with a little over a million external addresses contacting a
single internal address in the course of a month. For the year, there are slightly
over 10 million external addresses that each contact a single inside address and
more than half (5.4 million) are active in only a single hour of the observation
period. For reasons that we are still investigating, the diurnal variations in this
low frequency component are much smaller than those in the main portion of
the traffic, and the diurnal variations in the regular data are suppressed by the
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log scale presentation of their sum. Inspection of other end of the scale indi-
cates that the spreading is due to a substantial number of bulk scanners who
systematically probe the monitored network. We do not include either the low
frequency or bulk scanning components in our base model.

The simulation is written in Snobol-47, enhanced with a Mersenne Twister
random number generator8. The simulator produces scripts for the gnuplot
graphics program. The simulation is constructed in two parts. The first uses the
regression line, e11.763367 × x−1.957496, noted above and generates the expected
number of sources contacting each destination count. Noise is added using a tri-
angular distribution that spreads each point by a fixed percentage of its value
(constant width on a log / log scale). It is important to note that the sole purpose
of this portion of the simulation is to provide a realistic appearing base and
not to emulate the processes that actually produce the base. The noise spread is
included in the base so that the injected perturbations will not be completely ob-
vious at low levels of disturbance. We have not included the diurnal and weekly
variations found in the real data. Figures 6a and 6b show two and three dimen-
sional views of the base traffic. These were created by setting the perturbation
parameters to zero and assuming the fit parameter, 4% of the IPv4 address space
associated with the regression line. It is interesting to compare Figure 2b with
Figure 6a. In the central region, the figures are sufficiently similar so that we can
claim that the base traffic generation is adequate. This base traffic is used for all
of the subsequent simulations, normalized for different monitored percentages as
necessary.

To simplify the simulation of the perturbation process, we assume that the
perturbers scan at a constant rate, dictated by some delay loop. We also assume
that they generate random IP addresses, over some portion of the Internet, up
to and including all of the IPv4 address space, 0 · · · (232 − 1). If this is the
case, our monitoring network will collect a fraction of the probes, based on the
amount of address space being monitored and the percentage of probes that
target that space. The simulator allows us to specify these parameters as well as
the number of probers and the rate at which they probe. We have run a series
of sensitivity analyses in which we vary the coverage, i.e. the percentage of the
Internet being monitored, from 4 /24s to 20 /8s, assuming 1000 probers each
sending 2 probes per second. Similar runs vary the number of probers or the
probe rate while holding other parameters constant. The simulation is “brute
force” in that we simulate each prober separately. For each scanner, we generate
a random number in {0.0 · · ·1.0} for each scan it would have emitted during
the hour. The number of observed probes is the count of random numbers with
values below the monitored network percentage adjusted for the assumed probe
range9. This number is the number of destinations reached by the prober and
we add 1 to the appropriate base cell in the array holding the contact line.

7 Phil Budne’s C implementation, version 1.1 from http://www.snobol4.org
8 http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html
9 If we assume that the probes target just the monitored network, or some portion of

it, this count will approach the probe rate.
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Fig. 7. Simulation of 1000 perturbers at 1800 probes per hour. 1 /16 (7a) and 1 /8
(7b) monitored.

Figures 7a and 7b indicate that a perturbing population of of 1000 sources
at one probe per 2 seconds each might be visible if a single, relatively quiet /16
was being monitored but should be quite visible if a /8 is being monitored. This
appears to confirm hypothesis 2 and provides guidance for future investigations
of observed perturbations.

Fig. 8. Simulation of 100 (8a - 2D) and 1000 (8b - 3D) perturbers at 1800 probes per
hour, 12 /8s monitored

Similarly, Figures 8a and 8b indicate that 100 sources at 1 probe per 2 seconds
might be visible if 12 /8s are being monitored and that 1000 will be clearly
visible. Note that the disturbance moves downslope and grows in amplitude as
the coverage increases while the amplitude of the disturbance grows in place as
the number of probers increases. In both cases, the width of the disturbance
reflects the randomness of the interception process.

Figures 9a and 9b indicate that a disturbance caused by a population of 1000
probers each issuing one probe per 10 seconds (360 per hour) is barely visible in
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Fig. 9. Simulation of 1000 perturbers at 360 (9a) and 900 (9b) probes per hour, 12 /8s
monitored

Fig. 10. Simulation of 20 perturbers at 720 probes per hour, 75% (10a) and 99% (10b)
hit rate, 12 /8s covered

the artificial background, while a similar population is easily seen with a probe
rate of one per 4 seconds. Again, the disturbance moves down slope and increases
in amplitude with increasing probe rate. The above examples serve to describe
the approximate limits of visibility for regular probes as a function of probe
population and rate and observational coverage. In this part of the analysis, we
assume that the percentage of probes seen is equal to the percentage of the ad-
dress space that is being monitored. While this is true for a number of random
scanning strategies, targeted scans will manifest differently. The simulated per-
turbations embody the strategies implicit in Hypothesis 1. The resemblance to
the observed data is gratifying, but we cannot say conclusively that these are
the only assumptions capable of producing the observed phenomena.

4.1 The Minor Spike

Figures 4a and 4b show minor spikes at the 150 contacts per hour point in
addition to the broad disturbances seen earlier. We did not have an opportunity
to analyze these at the time, but realized that the simulation also provides a
plausible explanation for these as well. If the probing strategy is such that the
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probes fall entirely within the monitored network, the disturbances sharpen as
can be seen in Figures 10a and 10b. In this case, we are considering a population
of 20 probers with 75% and 99% of the probes being seen in the monitored
network. The probe rate is 720 per hour (1 every 5 seconds) per source. Note
that, if the hit rate were 100% for all sources, the spike would become a single dot
whose amplitude indicated the number of sources. We see exactly this behaviour
in the /22 network that we have been monitoring. This simulation is consistent
with Hypothesis 3.

4.2 Full Subnet Scanning on a /22

Figure 11 shows contact data for a month from the /22 that we have been
monitoring. The data was first filtered to retain only traffic from an external
source address to a destination addresses within the monitored network then
sorted by flow start time. The data was then filtered using a Bloom filter so
that only the first record for each unique source IP / destination IP pair was
kept for subsequent analysis. The retained data was passed through to the SiLK
rwbag program and a bag or multiset made for the source IP addresses. This
bag counts the number of internal addresses contacted by each external address.
Inverting this bag provides the data pairs used to produce the contact line. The
line is similar to those composing the contact surface seen in the Figure 2a.

Fig. 11. Observed Contact line for a /22 in April 2006
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The general shape of the curve is similar to those for the larger network. Several
hundred thousand external addresses appear associated with only a single inter-
nal address. In other months, this number is as much as a million. At the bottom
of the figure, one to three addresses contact most of the host counts between 50
or so and 101610.

Notable at the right hand end of the figure are high points, approaching 100
sources at 254 and 1016 destinations with smaller peaks at 508 and 762. A closer
inspection shows that significant numbers of sources attempt to connect to one
to four of the monitored subnets. Most probe all of the monitored addresses,
but smaller numbers contact nearly all, missing only one or two, resulting in
secondary points, as well. Inspection of the corresponding daily and hourly traffic
shows that the full scans are distributed throughout the month and are not easily
seen on a shorter time scale. These observations appear to be consistent with the
limiting cases of Hypothesis 3. The singleton traffic is the subject of a current
investigation. We note that during the 14 that months we have analyzed, nearly
13 million outside sources contacted the network. About 42% of these generated
only a single flow record and over 90% generated 10 or fewer flows.

5 Related Work

The contact surface described in this paper was first shown in a paper by McHugh
and Gates [3] on locality. However, at that time, the disturbance in the contact
surface was only noted, but not analyzed nor was it presented as a subject
for speculation. At that point it was not known that the perturbation would
disappear in August 2003. It appeared again in a later paper by McHugh et al.
[4], however at that point the cause of the perturbation was still unknown and,
again, the disturbance was not analyzed. Since that time the suspected cause of
the 2004 perturbation was discovered, and the contact surface was the subject
of several invited presentations but not of any publications.

While we know of no other work that has demonstrated a contact surface,
nor demonstrated observed effects of security-related phenomena on large-scale
traffic analysis, some work related to the contact surface can be found in the
network traffic analysis literature. Network traffic analysis traditionally has fo-
cused on an examination of traffic volumes or round-trip-times. For example,
Paxson and Floyd found that WAN traffic was largely self-similar in nature [5],
exhibiting fractal-like scaling behavior and a heavy-tailed distribution over var-
ious time scales. Feldmann et al. [6] studied this further, relating the impact
of the local networks on the traffic characteristics to the physical construction
of the network. Later, Chen modeled traffic volumes using an ARIMA (Auto-
Regressive Integrated Moving Average) model [7]. He analyzed traffic based on
subnetworks, such as analyzing all http traffic in isolation (rather than by LAN,

10 While the /22 contains 1024 addresses, the maximum count that we see is 1016.
Addresses 0 and 255 in each /24 do not appear, having been “absorbed” within the
instrumented router.
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as done by Feldmann et al.), and suggests aggregating each of these subnet-
works together to better model overall network traffic. Traffic volumes have also
been analyzed for security events (e.g., denial-of-service attacks) and failures,
using approaches such as signal processing [8]. Lee and Fapojuwo review several
statistical techniques for analyzing network traffic [9]. However, these studies
and others have not examined the interhost communication characteristics we
observe in the contact surface.

Some work has been done on analyzing host-to-host communications. For ex-
ample, Epsilon et al. [10] examined host-level network traffic characteristics for
ATM traffic at an ISP, finding that host traffic is highly non-uniform (with a few
servers accounting for the most traffic). They also analyzed connection informa-
tion in terms of typical traffic volumes, however no analysis was performed on
typical connection patterns (such as how many servers a typical client accessed).
Sarvothan et al. [11] do a similar connection-level analysis, noting that there are
two types of traffic — alpha and beta — where alpha traffic is dominated by a
few flows transferring large amounts of data over high-bandwidth connections
whereas beta traffic consist of the remaining flows with smaller data transfers
and lower bandwidths. Lakhina et al. [12] examined OD (origin-destination)
flows on backbone networks using PCA, however they defined the origin as a
network ingress point and the destination as a network egress point, rather than
as the source and destination hosts respectively. Lakhina et al. [13] also ex-
amined network traffic using clustering and entropy approaches on source and
destination IP addresses, but did not combine the two as done in the contact
surface. Dübendorfer et al. [14] analysed the effect of worm traffic on an internet
backbone, where they aggregated the number of unique sources seen over time.
However, they did not split this into the third dimension, aggregating again by
number of destinations contacted. Karagiannis et al. [15] do examine network
traffic at what they term the “social level”, analyzing the communication of a
single host with regards to the number of destination IPs contacted for partic-
ular types of traffic (e.g., web, p2p, malware and mail), however they do not
aggregate this information across multiple sources.

Visualization software has been developed to help administrators better un-
derstand their network traffic and better detect anomalies. Such visualizations
have typically focused on host to host behavior, such as providing three dimen-
sional graphs indicating the traffic relationships between external host, internal
host and destination port (see, for example, [16] and [17]). Goodall et al. [18] de-
veloped a Time-based Network traffic Visualizer (TNV) demonstrating context
and time for network traffic. TNV provides a visual representation of the network
traffic between hosts, but does not aggregate in the form shown in the contact
surface, instead focusing on traffic between individual hosts. Oberheide et al. [19]
present a similar tool, showing traffic volumes per host, or non-aggregated in-
terhost relationships. Interestingly, they show how the Dabber worm appears
using their interface, along with traffic both before and after a slashdot event.
However, as they do not look at the aggregated traffic, they do not observe the
same phenomena presented in this paper.
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6 Conclusions and Acknowledgments

We have developed a graphic representation for large scale Internet connection
behavior and have used it to investigate two outbreaks of what appears to be
synchronized activity by significant populations of scanning hosts. It appears
that the synchronization arises from a “design time” choice of a delay constant
in the scanning loop and that this allows a small population of scanners to create
a pronounced disturbance in the midst of the activities of millions of others.
We have explored the phenomena through simulation and believe that we have
plausible explanations for a number of features that appear in observed contact
lines. We realize that there is some risk in publishing this kind of result. It
would be trivial to modify the scanning mechanism so as to avoid the observed
phenomena. As part of our future work in this area, we will investigate the
effect of such changes, noting that both increases and decreases work against the
scanner, raising detectability or reducing effectiveness. Given access to suitable
data, we expect to discover additional periodic phenomena, as well. In addition,
the development of the techniques used to display and analyze this phenomena
has aided us in performing more immediate tasks as well as serving to identify
other research areas of interest. The reviewers of the paper made a number of
helpful suggestions, including the performance of more detailed analyses of the
2003 and 2004 outbreaks. We agree that these analyses should be performed, but
we no longer have access to this data and know of no comparable sources to which
we might obtain access. Thus far, we have been unable to persuade individuals
who have current access to collaborate. We want to thank Tom Longstaff for his
encouragement when we were all at CERT, Michael Collins and Mark Thomas for
the initial and continuing support of the SiLK tools. We owe a debt of gratitude
to the late Suresh L. Konda for the vision that made our discoveries possible.
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Abstract. In [6], Pouget et al. have conjectured the existence of so-called multi-
headed worms and found a couple of them on attack traces collected on a single
honeypot. These worms take advantage of several distinct attack techniques to
propagate but they use only one of them against a given target. From a victim’s
viewpoint, they are therefore indistinguishable from the other classical worms
that always propagate using the same attack vector or same sequence of attack
vectors. This paper aims at confirming the existence of these worms by studying
a very large dataset. The validation process led to three important contributions.
First, we establish the existence and assess the importance of three distinct classes
of attacks seen in the wild. Second, we propose a new method to correlate attack
traces time series and apply it to search for multi-headed worms. Third, we offer
and discuss results of the analysis of 15 months of data gathered over 28 different
platforms located all over the world.

1 Introduction

The concept of worm, as a programming paradigm, has been introduced more than 25
years ago [8] and has been used to propagate malicious code on a large scale as early
as September 1988 with the first ADM worm targeting the DNS infrastructure [3] and
with the so called Morris worm, also known as the Internet worm, hitting the Internet
in November 1988 [9,2]. However, one had to wait more than ten years to see worms
routinely used by hackers and various techniques used to speed up their propagation on
the Internet [10]. We refer the interested reader to the taxonomy of worms published
in [12]. The authors provide several examples of worms, classifying them according
to various viewpoints, namely worm target discovery and selection strategies, worm
carrier mechanisms, worm activation, possible payloads, and plausible attackers who
would employ a worm. As indicated in [12], worm authors are not so much interested
anymore in gaining faith for having created the fastest worm or the worm having com-
promised the largest amount of machines. Instead, worm spreading is now seen as a
preliminary phase to conduct other fraudulent activities to gain money using various
techniques (spam relays, extortion with DDoS threats, pay-per-click fraud, etc.). There-
fore, worms are now designed to make their propagations as stealthy as possible.

Multi-headed worms, identified by Pouget et al. in [6], belong to a new class of
worms designed with stealthiness in mind. These sophisticated programs can break
into target machines using several different techniques. This, by itself, is not new. The
Morris worm [9], in 1988, already had this feature. It was propagating using attacks
against three different services: rshd, fingerd and sendmail. The Morris worm, after

D. Zamboni (Ed.): DIMVA 2008, LNCS 5137, pp. 247–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



248 V.-H. Pham et al.

having selected a target, was trying all three attacks, one after another, interrupting the
process only in the case of a successful intrusion. Several other worms have, since then,
used the same strategy. They all are fairly easy to identify thanks to the known sets (or
sequences) of attacks they try against their targets. Multi-headed worms, as defined in
[6], use a very different strategy: they probe each target with only one of the attacks
they are capable of. This strategy decreases their chance of success but increases their
stealthiness. Indeed, there will be no trace left anywhere highlighting the fact that a
new worm has been created combining attacks X, Y and Z as they will never be tried
together by a given attacker against a given attackee.

In [6], the authors had used traces left on a simple low interaction honeypot to high-
light the existence of a couple of such multi-headed worms propagating in the Internet.
At that time, only one of them, Nachia, had been acknowledged by intrusion detection
and antivirus vendors. This seminal work had been carried out on a single platform and,
therefore, was not able to assess the seriousness of the threats posed by this new class
of worms.

In this paper, we carry out a systematic identification of multi-headed worms in at-
tack traces collected thanks to 28 distinct low interaction honeypot platforms, located
in 15 different countries, over a 15 month period. In order to perform this experiment,
we had to design a different method than the one originally proposed in [6] because of
algorithmic complexity issues. The application of this validation process led to three
important contributions: i) we establish the existence and assess the importance of three
distinct classes of attacks seen in the wild; ii) we offer a new generic method to cor-
relate attack traces time series that could be applied to other kinds of datasets; iii) we
offer and discuss results of the analysis of 15 months of data gathered over 28 different
platforms located all over the world.

The paper is structured as follows. Section 2 reviews the state of the art and describes
the two main reasons why the solution provided in [6] does not scale. Section 3 presents
the three distinct steps of the new method we propose: (i) Identification and selection of
attack classes (ii) Identification of correlated platforms (iii) Root causes identification.
Section 4 provides a summarized description and discussion of the most interesting
results obtained. Section 5 concludes the paper.

2 Problem Statement

In this section, we describe the original solution provided in [6] for the identification of
multi-headed worms and explain the two main reasons why this solution does not scale.
For the sake of completeness, we first start by briefly describing the data collection en-
vironment considered in that work as well as some definitions of terms used throughout
this paper.

2.1 The Leurré.com Environment

The Leurré.com environment is a distributed setup of low interaction honeypots. As
of now, there are approximately 50 different partners that host a so-called platform.
All platforms are configured exactly the same way. Each platform emulates, thanks to
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honeyd [7], three virtual machines: a Windows 98 machine, a Windows NT Server, and
a Linux RedHat 7.3. These platforms are located in 30 different countries covering the
five continents. They are hosted by different types of institutions (academic, industrial,
government, defense, SME, etc.). Most platforms have been active for more than 24
months; the oldest one has been running since January 2003.

Each platform captures tcpdump traces of all packets sent to and from it. These files
are uploaded, on a daily basis, in a centralized Oracle database accessible to all partners
to carry out various kinds of analysis. The entity relationship diagram of the database is
fairly complex and its description lies outside the scope of this paper. However, a few
key concepts must be precisely defined in order to avoid any misunderstandings.

– Platform: A physical machine, hosting three virtual machines, connected directly
to the Internet and collecting tcpdump traces in the context of the Leurré.com envi-
ronment.

– Source: A source corresponds to an IP address that has sent at least one packet
to, at least, one platform. It is important to understand that a given IP address can
correspond to several distinct sources. Indeed, a given IP remains associated to a
given source as long as there is no more than 25 hours between 2 packets received
from that IP. After such a delay, a new identifier will be assigned to the IP. By
grouping packets by sources instead of by IPs, we minimize the risk of gathering
packets sent by distinct physical machines that have been assigned the same IP
dynamically after 25 hours.

– Ports Sequence: A ports sequence is a time ordered sequence of ports (without
duplicates) a source has contacted on a given virtual machine. For example, if an
attacker sends the following packets: icmp, 135 TCP, 135 TCP, 139 TCP to a given
virtual machine, the associated ports sequence will be represented by the string
ICMP |135T |139T . Each source can have, at most, three distinct ports sequences
associated to it, per platform. As of now, we have observed around 40,000 distinct
unique ports sequences on all Leurré.com platforms.

– Cluster: A cluster is made of a group of sources that have left highly similar traces
on all platforms they have been seen on. Clusters have been precisely defined in [5].
They aim at grouping together attackers that are likely launching attacks with the
very same attack tool. Traces present in a given cluster have 7 features in common,
one of them being to have targeted the same ports sequence as defined here above.
As of now, we have observed more than 154,900 different clusters.

– Cluster time series: A Cluster time series represents the amount of sources, on a
daily basis, associated to a given cluster on a given platform. In other words, there
are, for a given cluster, as many cluster time series as platforms.

– Global Cluster time series: A global cluster time series represents the sum of all
cluster time series associated to a given cluster. In other words, there is a single
global cluster time series associated to a given cluster.

– Platform time series: A platform time series represents the sum of all cluster time
series associated to a given platform. In other words, there is a single platform time
series associated to a given platform.
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2.2 Seminal Work on the Identification of Multi-headed Worms

Pouget et al. have proposed in [6] a method to discover multi-headed attack tools. In that
paper, the authors explain that sources compromised by a multi-headed worm leave, by
definition, distinct traces on the honeypots depending on which attack they choose to
launch against them. As a result, the sources will be classified into as many different
clusters as there are different possible attacks for the worm. However, the various cluster
time series associated to a given multi-headed worm should evolve over time in a similar
way as they all are a function of the total amount of machines compromised by that
multi-headed worm at any point in time. Therefore, by identifying cluster time series
that are very similar to each other appears to be a simple yet efficient way to identify
multi-headed worms. In [6], the authors have used the SAX technique [4] to calculate
the distance between all pairs of cluster time series data.

The authors have shown, by means of data extracted from a single platform, the ex-
istence of a couple of interesting multi-headed worms. Having a much larger dataset at
our disposal, we were interested in verifying their results on a worldwide scale. Unfor-
tunately, we found out that the detection method in [6] does not scale to that level for
two main reasons. First, the most straightforward way to generalize the approach to data
collected on several platforms, instead of one, is to measure the distance between differ-
ent global cluster time series. Experience shows, as discussed below, that this approach
does not work when a large number of platforms located in many different places in the
world are considered. The reason lies in the fact that worms do not spread in an uniform
way across the IP space. Therefore, we must measure distances between cluster time
series observed on distinct platforms instead of global cluster time series. Second, the
authors in [6] considered a fixed time window of 1 year to assess the distance between
time series. This approach works for some extreme cases but, as we demonstrate here-
after, is also likely to miss many interesting phenomena, the existence of which is only
visible during a couple of weeks. Therefore, their fixed time window must be replaced
by a sliding window.

Measuring distance between cluster time series on many platforms by means of a
sliding window leads to an algorithmic complexity problem. In the next three sections,
we provide examples of the two problems described above and offer a formal complex-
ity analysis of these issues. Section 3 proposes a new solution to address these identified
drawbacks of the original method.

Fixed time window vs sliding time window. The top plot in Figure 1 presents the
global cluster time series for two distinct clusters, over a period of more than 450
days. The first (resp. second) one represents sources belonging to cluster number 15715
(resp. 60231) only. The corresponding ports sequence of cluster 15715 (resp. 60231) is
1433TCP (resp. 5900TCP). The SAX distance, computed as described in [6], i.e., over
the whole observation period, would lead us to consider that these two cluster time se-
ries are not correlated. However, when looking at the bottom plot in Figure 1, it is clear
that these curves are highly correlated between day 60 and 90. The reason why SAX
gives a low similitude is mostly due to the activities happening before day 60 as well
as after day 200. It can well be that the existence of the multi-headed worm can only
be detected during a limited period of time. This is especially true for multi-headed
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worms that are using attacks that were already frequently observed when the multi-
headed worm got launched. As a consequence, one cannot simply rely on the usage of a
large fixed time window, as proposed in [6] to detect those worms. Using a sliding time
window is obviously the way to go in order to address this issue.

Global cluster time series vs. cluster time series. The top plot in Figure 2, shows
two distinct cluster time series on platform 18 over a period of 30 days. The first (resp.
second) one represents the evolution of cluster number 15611(resp. 68049). The bot-
tom plot in Figure 2 represents the corresponding global cluster time series (over all
platforms) over the same period for these two clusters. These figures highlight the fact
that, on platform 18, the two cluster time series are highly correlated between day 70
until day 100 whereas the corresponding global cluster time series are not. This can be
explained by the fact that a multi-headed worm is not necessarily observed everywhere
in the world. If the multi-headed worm is reusing attack vectors that are frequently ob-
served elsewhere, its existence will remain hidden if we use global cluster time series
instead of carrying out the analysis on each platform independently.

Working with global cluster time series is thus not an option. One of the contribution
of this paper will be to demonstrate that, unlike global clusters, platform time series
carry enough information so as to uncover correlations among cluster time series. This
is an important finding as it enables us to reduce the computational cost of the correla-
tion search phase as shown in the next section.

2.3 Complexity Analysis

From the previous two examples, it comes out that, in order to deal with these two
issues, we should apply the method proposed in [6] between all cluster time series, for
every platform, over a sliding time window. Intuitively, this leads to a very large amount
of computations that we detail hereafter.
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Let S = {Si}, i = 1..N , be the set of platforms and A = {cli}, i = 1..K be the set
of distinct clusters observed on all the platforms during a period of T consecutive days.
Our objective is to identify all clusters that targeted a subset S′ ⊂ S of platforms over
a period of T ′ ≤ T consecutive days in a similar way. By similar, we mean that the
selected cluster time series on any two platforms of S′ are highly correlated.

To do so, we compute the correlation over a sliding window of size L. For a total of
M time series (M ≤ K × N as not all clusters are observed on all platforms), the total
number of correlations to be computed is given by:

C1 =
M × (M − 1)

2
(T − L)

C1 = O(M2T )

We postpone until Section 4 the details of the numerical results obtained from the
experiments but, for now, the reader should be aware that M amounts to more than
59,000 in the 15 months period considered. Clearly the simplistic generalization of the
method described in [6] is too expensive.

Our solution to reduce the complexity is twofold. First, we find an automated way to
select a subset M ′ from M such that M ′ � M . The reduction technique is presented
in Section 3.1. Experimentally, we found out that M ′ can be an order of magnitude
smaller than M . After such selection, the complexity comes down to C2 = O(M ′2T )
and C2 � C1. However, the cost C2 remains prohibitive and this leads to the second
step of our method where we compute filtered platform time series corresponding to the
sum of activities corresponding to these M ′ time series per platform. We then look for
similitude between these filtered platform time series instead of between cluster time
series. The cost to pay for finding similar platform time series comes down to

C3 =
N × (N − 1)

2
(T − L)

C3 = O(N2T )

This leads us to the identification of a certain amount P (with P � T −L) of periods in
which we have a group of Gi (with i = 1..P and for ∀i|Gi| � N ) correlated platform
time series. For each period, we have to find the cluster responsible for the identified
similarity. In other words, for each period, we must compare the M ′ cluster time series
with, at maximum, N filtered platform time series. This leads to the identification of
the root causes of the similarity on each platform. If we define G = maxGi|i = 1..P ,
an upper bound of the cost of this operation can be given by C4 = P × G × M ′.
Thus, the total cost of this method is equal to C5 = C3 + C4 and we have C5 =
O(N2T +PGM ′). In the general case, nothing ensures, a priori, that C5 � C2 � C1
but, as we expect the values of N, P and G to be very small compared to M and M ′, this
justifies the choice of this solution. Experimental results presented in Section 4 validate
this choice.

3 Methodology

We detail in this section the three steps of our methodology we have eluded to in the
previous Section:
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1. All attack traces can be grouped into three distinct families. Only one of them is
likely to contain traces due to multi-headed worms. Therefore, the method starts by
selecting in our dataset those traces that belong to the sole interesting family.

2. Our platforms observe a limited number of hits per day. If at some points in time
two platforms become the target of a multi-headed worm, we make the assumption
that this will significantly impact the overall platform time series on that period.
Therefore, the method identifies groups of platform time series strongly correlated
over different periods of time and identifies the root causes for those similitudes.
Similarly to the approach followed in [6], if a similitude is caused by many attack
tools, we believe this reveals the existence of a multi-headed worm. Obviously, if
the intensity of the attack is not high enough that it impacts the platform time series
of at least two platforms, our method will miss it. The validity of the method is
further discussed while presenting the experimental results in Section 4.

3. We search for the root causes, i.e. the clusters that are responsible, if any, for the
similar shape of the filtered platform time series in each group. Once we have found
them, we verify that they did not also existed on other platforms than the ones we
had in the group under study. This can happen if the influence of these clusters on
the other filtered platform time series was not strong enough to include them in the
group of similar platforms.

3.1 Construction of Filtered Platform Time Series

As explained before, the first step of our technique aims at reducing the number of
cluster time series we need to focus on. Our method to reduce the size of the problem
is based on our experience with attack traces collected in the Leurré.com project. We
have observed that cluster time series can be categorized into 3 distinct families1:

1. Peaked family: Time series in this family exhibit a significant peak of values dur-
ing a very small period of one or two days and almost no activity otherwise. In most
cases, the corresponding cluster is observed on a single platform only. We leave for
future work a more in depth study of this specific type of phenomena and we thus
exclude those time series when building platform time series.

2. Stable family: Time series in this family have a roughly constant behavior during
the whole observation period. As we make assumption that correlated clusters due
to multi-headed worms exhibits time series having similar noticeable variations
over time, stable clusters are meaningless in the context of this analysis. We can
simply remove them from our dataset. Note that removing the stable ones has little
impact on the shape of the platform time series. However, as a very large num-
ber of time series falls into the stable family, removing them from our initial set
dramatically reduces the computational cost.

3. Strongly varying family: Time series in this family are characterized by wide am-
plitude variations over long periods of time. Our objective is to uncover phenomena

1 There is no reason to believe that the findings described hereafter are not also applicable to
datasets collected by other projects. If that were the case, it would certainly be worth investi-
gating the reasons why.
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that involve several cluster time series over periods of time larger than a few days,
we restrict our attention to those time series in the remaining of this paper.

We proceed as follows to classify each cluster time series into one of the three fam-
ilies introduced above. We first compute the standard deviation of the time series over
the whole observation period. If it is smaller than a threshold δ, then we flag the time
series as belonging to the stable family. Otherwise, we filter out the outlier values from
the time series. Outliers are defined as the two greatest and smallest values of the time
series. Then we compute the standard deviation of newly obtained time series. If the
standard deviation is now smaller than δ, we declare the time series as being a peaked
time series. Otherwise, we declare the time series as belonging to the strongly varying
family and we thus keep it in our set of cluster time series. In the above procedure, we
used δ = 2, which is intended to be a conservative value, based on the visual inspection
of a lot of cluster time series.
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Figure 3 illustrates the algorithm for a cluster time series that spans over 20 days. The
standard deviation of the time series is 6.51. Since it is greater than 2, our algorithm can
not declare this time series as a stable one upfront. We next filter the extreme values
from this time series , which for the case of Figure 3 boils down to cutting the peak
on day 12. The resulting time series is obviously smoother than the initial one and its
standard deviation is 0.46, which is smaller than the threshold 2. Hence, our algorithm
eventually flags the time series of Figure 3 as belonging to the peaked family.

The cost of the above filtering process comes on top of the complexity evaluated in
the previous Section but it is very small compared to C1 since its complexity is linear
with respect to the number of clusters and the algorithm involved for each cluster is
much cheaper to run than the evaluation of the correlation between two clusters (over
sliding windows), as discussed before.

Figure 4 illustrates our pre-processing technique. We plot three platform time series
for platform 18. Original data is the platform time series obtained using all clusters.
It is made of 6162 clusters in this specific case. Peaks removed is obtained once the
peaked time series have been filtered out. It is made of 6108 clusters as 54 clusters were
peaks in this example. Clean data is the platform time series data once the peaked and
stable time series have been removed. It is made of only 39 clusters! This highlights the
usefulness of the preprocessing phase.
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Figure 4 clearly shows that original data is quite different from clean data due to
the two peaks at the same position (110). These peaks (clusters number 165249 and
165143) were created by 510 sources. This attack was neither observed before or after
day 80, nor was it observed on any other platform. As we can see, the peaks removed
and clean data time series have a very similar shape. They differ only with respect
to their amplitude. However, we remind the reader that the peaks removed time series
contain 6108 clusters and that only 39 (strongly varying) time series remain in clean
data.

3.2 Groups of Correlated Filtered Platform Time Series

In this section, we explain how we identify correlated groups, i.e. groups of platforms
for which any two filtered platform time series are mutually correlated for a given pe-
riod of T ′ days. Obviously, one wants to maximize the number of platforms involved
and the duration T ′ over which each group exists. The proposed algorithm is made of
three successive steps described in the following subsections: i) pairwise comparison of
filtered platform time series, ii) construction of groups of correlated platforms within
a given time period and iii) reorganization of the time periods to maximize them on a
group by group basis.

Pairwise correlation of filtered platform time series. The first step of our algorithm
consists in computing the correlation of any two platform time series using a sliding
window of L days. Consider two time series Φ and Ψ . Let cor(A, B) be the coefficient
of correlation of two vectors A and B. The correlation vector C of Φ and Ψ is computed
as follows:

C[k] = cor(Φ[k, k + L], Ψ [k, k + L]), k = 1, . . . T − L

Φ and Ψ are considered to be correlated in the interval [t1, t2] if C[k] is greater than
a given threshold for every k value in the interval [t1, t2 − L]. We use as a measure of
correlation the Pearson coefficient of correlation [11].

An important parameter of our procedure is the choice of the threshold to declare
that two time series are correlated. Again, we rely on experience, i.e. visual inspection
of a lot of cases, to choose our threshold. We end up having a threshold of 0.75. We
note that this is a high, and thus safe, value as 0.4 is already considered as a significant
correlation value in the statistical literature.

Figure 5 illustrates the first step of our procedure. The platform time series for plat-
forms 2 and 15 are deemed correlated in the interval [t1, t3] as their correlation vector
is greater than the threshold of 0.75 in the period [t1, t2] = [t1, t3 − L].

Application of the above procedure to all the pairs of platform time series leads to
the identification of a set of correlated pairs of platforms over different periods of time.
Figure 6 illustrates the situation at the end of the first phase. It shows that platform time
series 4 and 7 (curve 4&7) are correlated from day 1 to day 4, platform time series 1
and 8 (curve 8&1) are correlated from day 1 to day 6, etc.

Correlated groups extraction per time interval. Based on this first result, our next
objective is to divide the time line from 0 to T into a set of time intervals such that the
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pairs of platforms associated to one interval are correlated over the whole duration of
this interval. Within each interval, we want to identify groups of platforms such that all
platforms in the group are correlated to all others. The algorithm we use to achieve this
task can be summarized as follow:

1. i = 1, Tstart,i = 1, Tend,i = 1, L is the sliding window parameter.
2. We define Si as being the set of pairs of correlated platforms at time Tstart,i.
3. We exclude from S all pairs of correlated platforms that are not correlated until, at

least, Tstart,i + L.
4. We define Tend,i as being the first end point of the pairwise correlations in S. Inter-

val i is then defined as [Tstart,i, Tend,i]; We proceed to the next interval i → i + 1
5. We define Tstart,i as being the first start point of a pairwise correlations not yet

present in S.
6. If Tstart,i ≤ T −L, we reinitialize S to ∅ and go back to step 2; if not the algorithm

terminates.

Applying this algorithm to the case described in Figure 6, leads to the identification
of the three periods defined in Table 1 when we chose L=3.

Table 1. Periods

T1 = [Tstart,1, Tend,1] = [1, 4] S1 = {(4, 7), (8, 1), (1, 2), (2, 8)}
T2 = [Tstart,2, Tend,2] = [3, 6] S1 = {(8, 1), (1, 2), (2, 8), (9, 10)}
T3 = [Tstart,3, Tend,3] = [4, 8] S1 = {(5, 1), (1, 2), (2, 5)}

Having identified time intervals, we now need to group together all platforms that
are correlated with each other. If we use a graph representation of the correlated pairs
identified in the previous stage of our algorithm, the problem corresponds to the iden-
tification of cliques2 within the graph. We generate one graph per period. Nodes in a

2 A clique in an undirected graph G is a set of vertices V such that for every two vertices in V,
there exists an edge connecting the two.
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Fig. 7. Correlated groups extraction

graph represent platform time series and if two platform time series are correlated in
that period, their edges are connected. Figure 7 depicts the graphs we obtain for the
periods T1, T2 and T3 extracted from Figure 6. The clique extraction problem [1] is an
NP-complete one. In our case, this is not an issue as the number of nodes (platforms)
per period is very small, typically less than 20.

Reorganization of the time periods. From the example given above, it is clear that
our algorithm generates overlapping time intervals and that the very same group of cor-
related platforms can be found in these overlapping periods. For instance, the correlated
group consisting of platforms 1,2 and 8 appears in period T1 and also in period T2 in
Figure 7.

In the last step, we revisit the various groups obtained and, on a group by group
basis, merge time intervals whenever the same group is found in two consecutive or
overlapping periods. This eventually leads to the following time periods (Table 2) and
groups for the preceding example.

Table 2. Groups

T1 = [1, 4] G1 = (4, 7)

T2 = [1, 6] G2 = (1, 2, 8)

T3 = [3, 6] G3 = (9, 10)

T4 = [4, 8] G4 = (1, 2, 5)

3.3 Root Cause Analysis and Hidden Correlations

The most intuitive explanation behind the existence of correlated groups of platforms is
that those platforms are targeted by the same tool, launched from a diverse set of sources
in a loosely coordinated way. In that case, the same clusters(s) should be found on each
platform of the group as being the root cause of the correlation of the platform time
series. We could, therefore, simply search for the root causes on one platform per group.
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Fig. 8. cluster time series for the clusters uncovered during the root cause analysis for platforms
2 and 15

However, as explained in [6], multi-headed worms could hit platform X with cluster 1
and platform Y with cluster 2. Therefore, we take the stance of not assuming a priori
that the traces left by a given attack tool are the same on the platforms of a correlated
group. We thus look for the root causes behind a correlation independently for each
platform in a correlated group. This means that for a period of T ′ days associated to a
correlated group, we look, for each platform, for the set of cluster time series that are
correlated with the platform time series. Here too, we use a sliding window as one can
imagine that the platform time series are correlated due to two distinct and consecutive,
or overlapping phenomena. Section 4.2 shows an example of such a situation found in
our dataset.

The correlated group in Figure 5 (between day 31 and day 91) provides an illus-
tration of when the attack tool leaves the same fingerprint on each platform of a corre-
lated group. Indeed, our root cause analysis technique identifies three clusters numbered
15238,15715 and 60231 on both platform 2 and platform 15 as the root causes behind
the observed correlation. Figure 8 depicts the cluster time series over the correspond-
ing interval. Table 3 summarizes the correlation values obtained between the different
cluster time series for each pair of platforms in the extended group of platforms formed
by platforms {2,15}. As we can see, the correlation coefficients between those clusters
are extremely high (greater than 0.85) in this period.

We can observe the highly synchronized behavior of the activities targeting the two
platforms.

Hidden Correlations. The root cause analysis technique described above enables us
to find a set of candidate clusters associated to each correlated group for each platform
in that group. However, since we initially identify correlation based on the platform
time series, it is possible that a tool targeted x platforms but the effect of the tool is
only strongly influencing a subset of y < x platform time series (e.g due to the activity
of other local malwares) To uncover all possible hidden correlations, we check if all
clusters identified as root causes for a period of T ′ days for a correlated group are
correlated with their siblings on the platforms that are not in the correlated group.
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Table 3. Correlation coefficient between clusters

cluster t.s 2 2 2 15 15 15
15238 15715 60231 15238 15715 60231

15238-2 1.0000 0.8521 0.8422 0.8916 0.8631 0.8550
15715-2 0.8521 1.0000 0.9863 0.9248 0.9938 0.9908
60231-2 0.8422 0.9863 1.0000 0.9260 0.9873 0.9873
15238-15 0.8916 0.9248 0.9260 1.0000 0.9154 0.9121
15715-15 0.8631 0.9938 0.9873 0.9154 1.0000 0.9969
60231-15 0.8550 0.9908 0.9873 0.9121 0.9969 1.0000

4 Results

We experimented our algorithms for a period of T = 467 days (15 months) and for
28 platforms, whose up time rate was above 90% for the considered period. Those 28
platforms are located in 15 different countries. We applied the methodology described
in Section3.2 to a large dataset. It enables us to confirm the existence of multi-headed
attack tools, but it also leads to a better understanding of the specific behavior of other
interesting classes of attack tools. A summary of these findings is presented hereafter.

4.1 Overview

For our specific dataset, we identified 28 groups involving 111 cluster time series before
the hidden correlation identification phase and 130 cluster time series after that. The
groups were found in 23 distinct periods, lasting between 30 and 117 days. Figure 9
provides the distribution of number of clusters per correlated group. We observe from
Figure 9 that 18 out of 28 correlated groups (ie. 64%) have been associated to more than
one root cause. Table 4 lists all the clusters related to at least one correlated group. The
first column contains the cluster id. The second column lists the corresponding ports
sequences. If a cluster contacts two (resp. three) machines it will have two (resp. three)
ports sequences separated by a comma. The last column indicates the number of groups
that the cluster is involved in. Figure 10 shows the distribution of the size of correlated
groups. We observe from Figure 10 that most of the groups have a small size: 90% of
the groups have less than 7 platforms. This observation relates to the fact that malware
attack processes are in general not uniform over the IP address space. The observed
phenomena appear to be localized. This is confirmed by Figure 11 which shows that
most phenomena target a single /8 network. However, we observe that 21 out of the 28
platforms are involved in at least one correlated group showing that these phenomena
are visible all over the world. These 21 platforms are located in 13 (resp 12) out of 15
countries (16 /8 networks).

4.2 Root Causes Analysis

Based on the nature of correlated groups, we classify them into four different families
as follows: single root cause, variant signature attack tools, fingerprint worm, and multi-
headed worm.
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Single root cause. Table 5 presents all single root cause groups. They correspond
to phenomena where a single, and always the same, cluster is the root cause of the
correlation of platform time series. They could have been easily detected by computing
the correlation (still using a sliding window approach) between all the cluster time
series corresponding to the same cluster on each platform. This is in contrast with the
multi-headed tools that require comparisons between cluster time series that do not
correspond to the same clusters.

As an example, the top plot of Figure 12 represents the attacks corresponding to
cluster number 170309 on two platforms 7 and 27 from day 194 to day 290 (group 7 in
Table 5), targeting Symantec System Center Agent (SSC Agent) service on port 2967
TCP. As we can see, its cluster time series on these two platforms are almost the same.
The bottom plot represents the highly correlated attacks on the same two platforms and
also during the same period, but related to cluster 60231, targeting Virtual Networking
Computing service on port 5900 TCP (group 6 in Table 5). The interesting thing is that
the attacks of these two clusters are totally dissimilar. This shows the usefulness of the
sliding window technique during the root cause identification phase. We can see other
groups related to these 2 platforms around the same period. A more in-depth analysis
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Table 4. Cluster description

Cluster Id Ports sequences Number
of groups

15611 ICMP 7
15715 1433T 6
17466 135T 5
14647 445T 4
60231 5900T 4
60943 ICMP, ICMP 4

0 unclassified 3
17718 ICMP |445T 3

175309 2967T 3
15238 139T 2
15610 ICMP 2
54623 1025T 2
65710 1026U, 1026U, 1026U 2
75851 ICMP |445T |139T |445T |139T |445T 2
75853 ICMP |445T |139T |445T |139|T445T 2

136244 ICMP |445T |139T |445T |139T |445T 2
136323 ICMP |445T |139T |445T |139|T445T 2
17470 1026U 1
65862 1026U, 1026U 1
72377 1028U 1
76768 445T |5000T |445T |5000T 1
81280 5900T, 5900T 1

145554 445T |5000T |445T |5000T |135T |5000T 1
135T |5000T |135T |5000T |135T

147436 ICMP |445T |80T 1
147476 ICMP |445T |80T 1
150691 2967T, 2967T, 2967T 1
164629 2967T, 2967T 1
168772 1027U |1028U |1026U 1
171073 1027U |1026U |1028U 1
174163 1026U |1028U |1027U 1

of these identified groups and clusters would reveal interesting findings, from a forensic
point of view, highlighting relationships between phenomena which, otherwise, would
have been studied isolated from each other. Instead, our grouping can help those in
charge of attributing attacks to malicious actors, on the basis of their modus operandi.

Variant signature attack tools. Our clustering algorithm classifies sources into clus-
ters on a basis of a set of attributes such as the number of packets sent by the sources
to our platforms, the ports sequences, the number of virtual hosts contacted,etc. Not all
attack tools have a deterministic behavior. Some may probe ports in a random order, a
variable number of times, etc. As a result, traces left by such tools will appear in distinct
clusters that will appear in correlated groups. Table 6 lists them with the value ”Y” in
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Fig. 12. Single root cause example

Table 5. Single root cause

group platforms root causes start,end dates
1 6 8 22 24 26 17466 13,116
2 24 26 0 2,119
3 2 15 17466 31,91
4 7 27 15715 194,290
5 7 27 54623 198,263
6 7 27 60231 194,290
7 7 27 175309 194,290
8 6 8 17 22 26 17515 241,286
9 2 3 8 9 10 12 15 24 26 0 241,286

10 2 3 8 9 10 12 15 24 26 14647 412,452

the column labeled ”Variant”. In this specific dataset, we found two reasons for which
clusters can be ”splitted”.

The first one is that they have contacted a different number of targets (marked Y(1)
in Table 6). One cluster contacts only 1 honeypot and the other cluster contacts two
honeypots. By our observation, two-honeypot-contacted clusters have a smaller number
of sources than the one-honeypot-contacted clusters. It may be explained as follows: if
one source randomly chooses its target in a network, the probability for it to hit only one
of our machines is much higher than to hit two (or even three) of them. As an example,
the left plot of Figure 13 represents the attacks of all cluster time series related to group
26 in Table 6. The middle plot of Figure 13 represents only the attacks of two clusters
15611 and 60943 on platform 5. Cluster 15611 contacts 1 honeypot and cluster 60943
contacts two honeypots.

The other case is that the attack tool sends different amount of packets each time
it attacks our platform. These groups are marked ’Y(2)’ in the ”Variant” column. The
right plot of Figure 13 represents the attacks of three clusters numbered 75851, 75853
and 136323 also on platform 5. The three clusters have the same ports sequence:
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ICMP |445T |139T |445T |139T |445T . The difference resides in the number of
packets sent by each source in these clusters.

Fingerprint worm. OS fingerprint is a well-known attack tactic. The idea is that be-
fore launching the attack, the attacker checks the type of target system it faces and then
launches, or not, the appropriate attack. We have found worms that automatized this
idea. We call them ”Fingerprint worm”. If a fingerprint worm learns that it is attacking
a non vulnerable host (w.r.t its attack model), it gives up. Since on our platforms, we
deploy two kinds of virtual machines: Windows and Linux, the fingerprint worms will
leave different traces on these two platforms. In terms of ports sequences, fingerprint
worms may leave two different ports sequences on two kinds of virtual machines. One
ports sequence may be the prefix of the other. We have found 5 cases of fingerprint
worm in our dataset. They are presented in Table 6 with the value ”Y” in the column
”fingerprint”. For instance, we plot 4 clusters numbered 75851, 75853, 136323, and
17718 of platform 5 from, again, group 26 (in Table 6) on Figure 14. The three clus-
ters numbered 75851,75853 and 136323 (resp. 17718) have the corresponding ports
sequence ICMP |445T |139T |445T |139T |445T (resp. ICMP |445T ). Cluster 17718
is mostly observed on the Linux machine (296 sources). There are only 64 sources that

Table 6. Multiple root cause groups

group platforms root causes start,end dates Multi- Finger- Var-
headed print iant

11 5 13 15610 15611 17718 60943 52,119 Y Y(1,2)
75851 75853 136244 136323

12 5 13 15611 17718 157,194 Y
13 27 0 14647 145554 316,364 Y
14 10 21 14647 15611 76768 332,364 Y
15 9 27 72377 168772 171073 174163 371,408 Y(2)
16 24 26 15611 60943 419,452 Y(1)
17 7 27 175309 164629 73,119 Y(1)
18 8 11 17470 65862 156,202 Y(1)
19 7 27 60231 81280 316,364 Y(1)
20 1 2 3 6 10 15611 60943 2,119 Y(1)

12 15 22 24 26
21 6 8 10 17 150691 175309 56,91 Y(1)

22 24 26
22 9 23 15611 65710 405,448 Y
23 2 15 15238,15715,60231 31,91 Y
24 2 15 14647 15238 15715 17466 246,286 Y
25 6 8 17 22 26 15715 17466 253,286 Y
26 5 13 28 15610 15611 17718 60943 120,156 Y Y Y(1,2)

75851 75853 136244
136323 147436 147476

27 2 15 15715 17466 60231 163,194 Y
28 7 8 27 54623 65710 214,245 Y
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Fig. 14. Example Fingerprint worm

sent packets to the other two windows machines. The three other clusters however, are
only observed on the two windows machines (251 sources in total). The explanation
is that since port 445TCP is closed on the Linux machine, the attack tool is ”intelli-
gent enough” not to try port 139 TCP since it knows that the target is not vulnerable
w.r.t its attacks. The fact that 64 sources have contacted the two Windows machines
but have given up can probably be explained by packet losses, either in the network
(e.g packet losses, firewall filters,etc..) or at the host (e.g congestion while launching
too many scans in parallel). Here too, the identification of this class of attacks helps in
understanding the threats on the Internet.

Multi-headed attack tools. As being mentioned before, attack tools belonging to the
multi-headed family have different attack techniques, but each time they use only one
of them against the victim. The services targeted are usually different. Table 6 indicates
all the multi-headed groups we found. They have the ”Y” value in the column labeled
”Multi-headed”. As an example, group 23 in Figure 8 consists of three clusters targeting
Microsoft NetBios Service (port 139 TCP), Virtual Network Computing service (port
5900 TCP) and Microsoft SQL Server (port 1433 TCP). The coordinated attacks of
these three clusters spanned from day 31 to day 91. The top plot of Figure 15 represents
group 24. It consists of four clusters numbered 14647(port 445 TCP), 15238 (port 139
TCP), 15715 (port 1433 TCP) and 17466(135 TCP). Their time series on platforms 2
and 15 are highly correlated from day 246 to day 286. As a sanity check, we found
very low correlation coefficient between these cluster time series when computing their
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Fig. 15. Example of multi-header worm

correlation coefficients over the whole period. For instance, the bottom plot of Figure 15
shows the dissimilitude of two cluster time series 17466 and 14647 on platform 2 from
day 1 to day 245 (the interval just before the correlation). We could not have discovered
this group if we had applied the algorithm for the whole period.

5 Conclusion

In this paper, we revisit the problem of discovering multi-headed worms mentioned
in [6], but in the context of a larger dataset collected from a distributed honeypot net-
work. Compared to the approach in [6] where correlation was investigated over the
whole period of observation, our technique is able to look for correlation over smaller
periods of time. To avoid comparing all possible cluster time series over different time
windows, which is very costly, we worked around this issue by using filtered platform
time series. Our expectation was that the phenomena we were looking for would be
enough spatially and timely localized so as to be visible in the filtered platform time
series over some periods of time. Applying our technique to a 15 month dataset, we
are not only able to confirm the existence of multi-headed worms (on many places),
but also bring to the community insight knowledge about worm behaviours. Besides
that, the results obtained can also be used to improve our clustering algorithm. How-
ever, work remains to take full advantage of the obtained result in order to carry out a
systematic analysis of the identified phenomena and to help in studying the so called
attack attribution problem.
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Abstract. In this work we undertake the creation of a framework for testing the
degree to which network intrusion detection systems (NIDS) detect and handle
evasion attacks. Our prototype system, idsprobe, takes as input a packet trace
and from it constructs a configurable set of variant traces that introduce different
forms of ambiguities that can lead to evasions. Our test harness then uses these
variant traces in either an offline configuration, in which the NIDS under test
reads traffic from the traces directly, or a live setup, in which we employ replay
technology to feed traffic over a physical network past a NIDS reading directly
from a network interface, and to potentially live victim machines. Summary re-
ports of the differences in NIDS output tell the analyst to what degree the NIDS’s
results vary, reflecting sensitivities to (and possible detections of) different eva-
sions. We demonstrate idsprobe using two popular open-source NIDSs and
report on their respective abilities in dealing with evasive traffic.

1 Introduction

Network intrusion detection systems (NIDS) monitor network traffic for potential
threats and successful exploits. However, such monitoring faces a fundamental prob-
lem: the traffic as observed by an intermediary such as a NIDS does not necessarily
appear to the recipient in the same semantic terms. Instead, the recipient may either
observe a different pattern of traffic or may impose an alternative interpretation on am-
biguous traffic (such as two packets spanning the same sequence range in a TCP flow,
but offering different payload bytes for that sequence). While attackers can actively ex-
ploit such ambiguities to confuse NIDS, ambiguities unfortunately also arise in traffic
streams for benign reasons, requiring valuable analyst time for ascertaining whether the
condition constitutes a threat.

Given the fundamental significance of evasion attacks for network intrusion detec-
tion, it is striking how little has been documented regarding the efficacy with which
modern NIDS address the threat. Vendors publish extensive performance testing results
regarding linespeed and breadth of attacks detected by a given system, but little infor-
mation regarding its resilience to evasion. Because evasion constitutes a fundamental
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problem, however, for vendors to ignore it risks building a “house of cards”: their prod-
ucts increasingly provide more of an appearance of security than a reliable foundation.
Recently, third-party testing of NIDS products has begun to include an assessment of
evasion vulnerabilities [1]. This testing environment, however, is proprietary: it is not
available for inspection, modification and extension by others. In this work, we argue
that there is significant utility for the network security community at large to have an
easy-to-use, transparent, open-source environment for testing NIDS for resilience in the
presence of evasion.

To this end, we have designed and implemented a framework, termed idsprobe,
to facilitate the creation of evasion test-cases in a pluggable fashion, coupled with fully
automated testing of different NIDS on the resulting test-cases. In the next section,
we describe the requirements that guided our system development. In § 3 we present
the architecture of the overall framework, and in § 4 some initial experimental results
obtained with using it. We discuss related work in § 5, and offer final thoughts as well
as a look at important future work in § 6.

2 Requirements

For our evasion-testing environment we consider two sets of requirements: creating test
cases, and then applying those test cases to evaluate a given NIDS.

For the former, we have the following considerations. First, the framework should
support both trace-based test cases and live network operation. Trace-based test cases
offer very large advantages in terms of repeatability, portability, and ease of inspec-
tion and verification of correctness. However, some forms of evasion testing require
live testing. These include: (i) NIDS that gain information from end systems [2,3,4];
(ii) NIDS that employ some form of traffic modification to remove ambiguities to pre-
vent evasions from exploiting them [5,6]; and (iii) evasion attacks that rely on resource
exhaustion thus causing it to drop packets and consequently miss an attack. Second,
the framework needs to accommodate elementary and modular traffic transformations
across the relevant layers of the protocol stack. For example, a single test case might
include network-layer (e.g., fragmentation), transport-layer (e.g., ambiguous TCP re-
transmissions) and application-layer (e.g., ambiguous HTTP character encoding) eva-
sions all together.

To use the resulting test cases for evaluating a NIDS, we desire the following. First,
reusability of the generated test traces for live testing. On-the-fly introduction of evasive
actions to live traffic is complicated by the fact that it requires selectiveness as well as
careful sequencing. The ability to leverage input traces containing ready-made evasions
in live environments both reduces effort and improves reliability. Second, automation of
the process of executing the NIDS and capturing its full set of outputs, including sum-
maries of differences among individual runs. Finally, suitable postprocessors to inspect
these differences to highlight patterns corresponding to susceptibility to or thwarting
of evasion attempts, particularly to shed light on architectural issues reflected in the
results (such as whether a given NIDS lacks sufficient state).
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Fig. 1. The idsprobe framework. Top: offline testing, bottom: live environment.

3 Framework Architecture

Figure 1 illustrates the current architecture of the idsprobe framework, which ac-
commodates both offline and live testing.

3.1 Overview

For simplicity, we limit the presentation of the framework to reflect a single set of
related test cases. The process begins with a single, non-evasive trace which contains
some attribute, such as a particular payload string in a particular context, for which
we can configure a NIDS to detect its presence. We then repeatedly apply a series of
transformation profiles to copies of this trace to yield a set of variants, each of which
reflects a particular potential evasion. After generating these traces, we then employ a
“test harness” to run a set of NIDS-under-test against the traces (including the original,
unmodified trace), capturing their outputs, from which we then construct a set of reports
summarizing the NIDS’s behavior in the presence of different evasions.

3.2 Test Case Generation

To support modularity, we encapsulate a set of elementary transformations in scripts
that can be individually invoked and then subsequently composed. Each script takes
as input (from a file or stdin) a libpcap trace and produces as output a new trace
(to a given output file or stdout). In addition, the idsprobe framework transparently
manages any temporary storage a script requires to perform the transformation, which
facilitates chained application of transformations.

We currently provide tools for the following transformations:

Application layer. We support rewriting of application-layer contents using the frame-
work developed in our previous work [7] built upon the Bro intrusion detection
system [8]. This framework allows application-level specification of trace transfor-
mations that are then reflected down to the transport layer (adjustment of sequence
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numbers, checksums, and acknowledgments) and network layer (repacketization
where required).

Transport layer. This level currently supports adjustment of relevant header control
bits, payload modifications, and adjustment of checksums. We implement these
using plug-ins for Netdude [9].

Network layer. Our current support for network-layer modifications—also based on
Netdude plug-ins—comprises modification of arbitrary header fields, duplica-
tion/insertion/removal of individual packets, IP fragmentation, and checksum
correction.

Trace file manipulation. We provide additional plug-ins to (i) adjust packet timestamps
in trace files, (ii) correct the flow of time (sort packets with non-monotonic times-
tamps), and (iii) recombine multiple sets of packets/traces into a single trace file.

We emphasize that the scripting interface to the transformation tools can readily ac-
commodate other tools that can provide trace manipulation at different semantic levels.

Finally, we also note a somewhat subtle point regarding composition of different
evasions: multiple types of evasions need to be applied “top down” in terms of network
protocol layering. That is, we must first apply application-layer transformations, then
transport-layer ones, and finally those operating at the network-layer. The reason for
this is that tools that manipulate one layer generally assume that the lower layer is
unambiguous (and thus the tool is free to rewrite it accordingly).

3.3 Offline Evasion Testing

Once a set of test traces have been generated, the idsprobe framework then enables
automated assessment of a number of NIDS against the suite. Adding a NIDS is a simple
process: all that is required is to provide a shell script that will invoke the NIDS given a
number of environment variables including, among others, the trace file to be analyzed.
The test harness then invokes the script repeatedly to execute the NIDS across each
of the traces in the variant set, storing the generated files separately. After execution,
idsprobe invokes diff -based file-differencing to determine the degree to which the
NIDS’s behavior changed for given variants. Once differenced, the results currently
require manual inspection to assess their significance.

3.4 Live Evasion Testing

As mentioned in Section 2, some forms of evasion testing require live tests. To facil-
itate these, we extended the idsprobe framework to function in live environments,
while allowing us to re-use the evasive test traces generated for offline testing whenever
possible. Three components, connected via a physical link, facilitate live testing: (i) a
traffic generator, which establishes connections to the victim machine(s) and drives the
data exchange; (ii) a NIDS installation which monitors the link; and (iii) a virtual target
network which hosts the victim machines, responding to the traffic sent by the traffic
generator.

The key challenge for the traffic generator is enabling re-use of the existing test
traces. Our approach is to replay traces adaptively, relying on the causality of exchanged
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application data units (ADUs) at the application level and to ignore the actual content of
the responder’s ADUs, while patching up the sequence and acknowledgement numbers
in the input trace’s packets to keep the TCP exchange working. We used the scapy
packet processing tool [10] to build this replay functionality.

We used honeyd [11] to realize the virtual target network. honeyd provides
the major benefits of allowing easy adjustment of the network topology (for exam-
ple in order to introduce additional routers for reachability evasions relying on the
IP TTL field), while providing flexible victim responder configurations. ranging from
simple shell scripts to forwarding to live external systems via honeyd’s subsystem
mechanism.

4 Initial Experimental Results

As a preliminary evaluation of the idsprobe framework, we developed an initial
set of 10 different types of test cases. We evaluated each against the Snort [12] (ver-
sion 2.6.1.4) and Bro [8] (version 1.2.1) NIDSs.

4.1 Test Cases

In all test cases, we use a set of traces of entire, full-packet TCP connections. Each
contains a single HTTP request with lengths ranging from 8 to 256 bytes, and a corre-
sponding HTTP response. The main objective is to determine whether the NIDS under
test can match a signature (not necessarily of an attack) that we know is present in the
generated, evasive traffic, while also checking for any signs of evasion or other unusual
activity that the NIDS might signal. idsprobe automatically generated 196 test traces
based on 5 input traces. Table 1 shows the sets of transformations.

4.2 NIDS Configurations

For the Bro NIDS, we used its default configuration settings. We instructed it to moni-
tor all TCP traffic (-f tcp) and loaded the mt, frag, and signatures analyzers.
We configured signatures for the HTTP requests in the input traces, with each signature
matching exactly one of the HTTP requests. For Snort, we removed the large list of
signature file include directives, since none of the listed rule sets were actually in-
cluded in the Snort distribution, verified that the frag3 and stream4 preprocessors
were enabled, and that evasion-related alerts would be generated.

4.3 Findings

Output of idsprobe-generated traces. Table 2 summarizes our findings based on
the idsprobe-generated evasive packet traces. Overall, Bro and Snort performed sim-
ilarly as far as signature detection is concerned. They differ, however, in the amount of
detail delivered in addition to the relevant alerts. After excluding from file-differencing
Bro’s .state directories (which remain empty) and Snort’s tcpdump log files, the total
amount of difference in Bro’s output amounts to 1,665 lines, as opposed to 17,018 for
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Table 1. Test cases used for evaluating idsprobe

– TC1 A single, consistent, and immediate retransmission 1 μsec after the original of a TCP
segment carrying the signature-bearing application-layer payload. This test case checks
whether the NIDS performs a simple form of TCP stream reassembly correctly.

– TC2 Like TC1, but the retransmission consists of only part of the original TCP segment. We
retransmit a right-aligned part of the original segment with correct checksum and sequence
number. This constellation likewise presents neither threat nor ambiguity.

– TC3 Like TC1, but we change the TCP payload on the first (subtest TC3a) or the second
(subtest TC3b) variant of the duplicated packet, respectively, without any checksum correc-
tions. This test does not pose any actual ambiguity.

– TC4 Like TC3, except now the checksums are corrected. Our payload modification is care-
less, thus leading to a different checksum value. This test case represents the first truly am-
biguous traffic. The NIDS needs to decide which version of the byte stream to analyze, and
ideally should note the inconsistency.

– TC5 Like TC4, but we change the TCP payload carefully, leaving the checksum unchanged.
We achieve this by swapping 16-bit fields, though one could derive more complex modi-
fications due to the incremental nature of the checksumming algorithm. As with TC3, this
presents a real ambiguity, requiring the NIDS to compare the actual payloads.

– TC6 We duplicate one of the IP datagrams in the TCP flow, setting its IP fragment offset
to a non-zero offset value (adjusting the IP header checksum to reflect the change) on the
first (subtest TC6a) or second (subtest TC6b) variant, respectively. This test case creates an
ambiguous, malformed fragment.

– TC7 We duplicate one of the IP datagrams in the TCP flow and set its IP TTL value to a
number of different values (again with header checksum updated) on the first (subtest TC7a)
or second (subtest TC7b) variant, respectively. This test case does not introduce a serious
ambiguity but can confuse NIDS evasion detection that examines TTL values for anomalies.

– TC8 We consistently fragment one of the IP datagrams in the TCP flow carrying the
signature-bearing payload, using various different fragment sizes. This test case tests
whether the NIDS correctly processes well-formed fragments.

– TC9 Like TC8, but we duplicate one of the fragments, and alter its payload in the first
(subtest TC8a) or second (subtest TC8b) variant, respectively. The alteration is again care-
less, i.e., reassembly of the datagram using the modified payload leads to an incorrect TCP
checksum for the full datagram.

– TC10 Like TC9, but with a careful payload alteration, i.e., reassembly of the datagram using
the modified payload leaves the TCP checksum unchanged. Figures 2 and 3 present the
workings of TC10 in detail.

Snort. Ignoring Snort’s verbose summary output reported on stdout and stderr reduced
the differential data volume to 1,329 lines.

In TC2, Snort erroneously reported a TCP checksum change on a retransmission,
where in fact no divergent payload was transferred. In the event of careful payload alter-
ations that do not affect the TCP checksum (TC5/TC10), however, Snort fails to notice
the (rather likely) evasion attempt. Bro handled both cases correctly, remaining silent
on the former but alerting on the latter case. Snort also generated a total of 60 potential
evasive TCP FIN detections in 4 of the test cases. A number of the values reported in
these alerts are nonsensical, such as IP TTL values of 240, IP ToS fields with values
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00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: . 1:158(157) ack 1 win 32768
0x0000   4500 00c5 7566 0000 4006 f01b 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 07dd 0050 0000 092a 3838 4e57        .0.Q...P...*88NW
0x0020   5010 8000 0fc2 0000 4745 5420 2f31 6162        P.......GET./1ab
0x0030   6364 6566 6768 696a 6b6c 6d6e 6f70 7172        cdefghijklmnopqr
0x0040   7374 7576 7778 797a 3261 6263 6465 6667        stuvwxyz2abcdefg
0x0050   6869 6a6b 6c6d 6e6f 7071 7273 7475 7677        hijklmnopqrstuvw
0x0060   7879 7a33 6162 6364 6566 6768 696a 6b6c        xyz3abcdefghijkl
0x0070   6d6e 6f70 7172 7374 7576 7778 797a 3461        mnopqrstuvwxyz4a
0x0080   6263 6465 6667 6869 6a6b 6c6d 6e6f 7071        bcdefghijklmnopq
0x0090   7273 7475 7677 7879 7a35 6162 6364 6566        rstuvwxyz5abcdef
0x00a0   6768 696a 6b6c 6d6e 6f70 7172 7320 4854        ghijklmnopqrs.HT
0x00b0   5450 2f31 2e31 0d0a 484f 5354 3a6e 6f6e        TP/1.1..HOST:non
0x00c0   650d 0a0d 0a                                   e....

Fig. 2. tcpdump output for relevant packet from the TC10 input trace. A single TCP segment
contains the relevant application-layer content, “GET /1abcdef”.

00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: [|tcp] (frag 30054:8@0+)
00:01:37.427629 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@8+)
00:01:37.427630 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@16+)
0x0000   4500 001c 7566 2002 4006 d0c2 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 0fc2 0000 4745 5420                  .0.Q....GET.
00:01:37.427631 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000   4500 001c 7566 2003 4006 d0c1 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 2f31 6162 6364 6566                  .0.Q/1abcdef
00:01:37.427632 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000   4500 001c 7566 2003 4006 d0c1 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 2f31 6364 6162 6566                  .0.Q/1cdabef
00:01:37.427633 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@32+)
0x0000   4500 001c 7566 2004 4006 d0c0 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 6768 696a 6b6c 6d6e                  .0.Qghijklmn
00:01:37.427634 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@40+)
00:01:37.427635 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@48+)
...
00:01:37.427650 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@168+)
00:01:37.427651 10.48.0.1 > 10.48.0.81: tcp (frag 30054:1@176)

Fig. 3. tcpdump output of resulting TC10 evasive traffic. The TCP segment shown in Figure 2 has
its application-layer content rewritten, fragmented into 24 8-byte fragments, with a duplicate frag-
ment with the original TCP stream content inserted after the third fragment. The sensitive payload
is now spread across three IP datagrams. The payload variation preserves the TCP checksum’s
validity. Finally, idsprobe patches the packet timestamps to preserve chronological ordering.

Table 2. Bro’s vs. Snort’s results on 10 test cases generated by idsprobe. The first line per
NIDS summarizes signature detection, the second reports evasion-related alerts or messages.
The numbers reflect the following: ➀ “RetransmissionInconsistency”. ➁ “WeirdActivity” of type
“fragment inconsistency”. ➂ Bad checksums in weird.log. ➃ “WeirdActivity” of type “exces-
sively small fragment” for fragments of 32 bytes or less. ➄ “Possible evasive FIN detection”
with nonsensical parameters. ➅ “TCP checksum changed on retransmission”. ➆ “Fragmentation
overlap”.

Output TC1 TC2 TC3a/b TC4a/b TC5a/b TC6a/b TC7a/b TC8 TC9a/b TC10a/b

Bro
Sig. match � � � ✗/� ✗/� � � � ✗/� ✗/�

Evasion ➂ ➀ ➀ ➃ ➁➃ ➁➃

Snort
Sig. match � � � ✗/� ✗/� � � � ✗/� ✗/�

Evasion ➄ ➅ ➄ ➄ ➆

0x10, and IP IDs of 0. None of these values exist in the FIN packets in question; in
addition, none of the traces actually reflects an ambiguous TCP FIN packet.

Bro correctly reports TCP retransmission inconsistencies, IP fragment inconsis-
tencies, the presence of bad checksums, and the presence of excessively small IP
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08:00:09.176192 IP 10.48.0.1.2010 > 10.48.0.81.80: . 1:13(12) ack 1 win 32768
        0x0000:  4500 0034 f178 0000 4006 749a 0a30 0001  E..4.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 092a 3392 88d8  .0.Q...P...*3...
        0x0020:  5010 8000 4582 0000 4745 5420 2f31 6162  P...E...GET./1ab
        0x0030:  6364 7878                                cdxx
08:00:09.176194 IP 10.48.0.1.2010 > 10.48.0.81.80: . 11:14(3) ack 1 win 32768
        0x0000:  4500 002b f178 0000 4006 74a3 0a30 0001  E..+.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 0934 3392 88d8  .0.Q...P...43...
        0x0020:  5010 8000 80f0 0000 6566 67              P.......efg

Fig. 4. tcpdump of inconsistent retransmission not reported by Snort 2.8.0.1

fragments. For Snort, the only correct evasion-related output concerns IP fragmenta-
tion overlap.1

During the course of our work, new releases of Snort appeared. We experimented
with the latest release available, Snort version 2.8.0.1, to see how its behavior might
have changed. The erroneous evasive FIN alerts have been repaired. However, the new
stream reassembly module stream5 introduced new issues: a partially overlapping
retransmission (shown in Figure 4) is not reported, while Snort 2.6.1.4 did report a
changed TCP checksum on the retransmission.

Output after long-term operation. To better understand the usability of evasion/
anomaly-related events reported by different IDSs, we ran Bro 1.2.1 along with
Snort 2.6.1.4 and 2.8.0.1 on a 24-hour, 21 GB trace recorded at ICSI on 16 March
2007. The NIDSs were not configured to detect attacks, but only to report anomalous
or potentially evasive activity.

Table 3 summarizes our findings. The absence of consensus in the reported events
is striking, particularly between Bro and the Snort versions, but to a lesser degree even
between two different Snort releases. TCP SYNs with payload data seem a rare case
where there is near-consensus, with the three NIDSs reporting 460, 458, and 461 in-
stances, respectively. Bro reports a single retransmission inconsistency (which we have
verified to be correct, but it does not reflect a malicious evasion). Snort 2.6 reports this
as one of 36,873 “possible EVASIVE RST detection” events, and Snort 2.8 as 3 of the 5
“Data sent on stream after TCP Reset” events recorded. For the 22,137 flow reassem-
bly issues reported by Bro (“ContentGap” and “AckAboveHole”), which have direct
significance for content-based analysis, there is no apparent corresponding alert in ei-
ther of the Snort logs. These events account for the main reason why Snort 2.8 reports
fewer events than Bro, whose output volume is almost an order of magnitude below
Snort 2.6’s.

5 Related Work

The fundamental problem of NIDS evasion was first framed in the seminal paper by
Ptacek and Newsham [13]. Aspects of the problem also appear in the discussion of the Bro
system [8], particularly in the context of inconsistent TCP retransmissions. In response
to the threat of evasion, researchers have developed several types of countermeasures,

1 Even that is not the best description of the problem, since IP fragments can overlap for rare-
but-benign reasons. Better would be to highlight that the overlap is inconsistent.
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such as traffic normalization [5,6], active mapping [2], passive fingerprinting [4], and the
use of host-based context [3].

Several tools have been developed for testing NIDS for vulnerabilities to evasion.
Fragrouter2 implements some network-layer evasions based on IP fragmentation. Un-
like our framework, it modifies live traffic only. The libwhisker3 library provides basic
functionality for testing HTTP implementations. Nikto4 leverages the library, adding
HTTP content obfuscation techniques. Both tools primarily target live-traffic operation.

Regarding systematic evaluation of NIDS in the presence of possible evasions,
Vigna and colleagues present a framework for NIDS testing based on traffic transfor-
mation [14]. Rather than testing the NIDSs’ awareness of evasion, they emphasize eval-
uating the robustness of individual signatures used by such NIDSs. Their system takes
as input an attack trace, to which it applies semantically invariant transformations and
then and monitors for changes in the alerts generated by the NIDSs. Similarly, Rubin
et al. developed a framework to facilitate traffic transformations on different network
layers [15], again aiming to produce variants of a specific attack. Marty [16] similarly
proposed a platform for subjecting NIDS to automatically generated variations of attack
traffic. His system exclusively operates on live traffic.

In contrast to these efforts, our framework does not assume the existence of an at-
tack, but instead determines the general effects of traffic transformations. This allows
us to separate the NIDS’s specific attack detection logic from its architectural analysis
limitations. In addition, the work of Rubin et al. develops a formal model of possible
transformations, which allows them to exhaustively test a NIDS against attack variants.
Our work, on the other hand, aims to facilitate a public, open-source effort for develop-
ing NIDS evasion test suites, with a related emphasis for our framework on modularity
and a plug-in architecture.

6 Discussion and Future Work

The idsprobe framework does not attempt to provide “turnkey” evaluation of NIDS
evasion vulnerabilities. Rather, our aim is to provide the means for an experienced as-
sessor to more readily construct good test cases, and more efficiently apply those test
cases in a repeatable fashion across a set of NIDS under consideration. We also do
not strive to ourselves provide a comprehensive set of evasion tests; rather, we aim to
facilitate that others can collectively work towards such a goal. These considerations
motivate our open-source, modular/plug-in approach.

The focus of our future work is to devise methodologies for assessing live-traffic
evasions based on overloading NIDS resources and to assess the efficacy of on-line
anti-evasion technology.

2 Per http://www.securityfocus.com/tools/176, nominally available at
http://www.anzen.com/research/nidsbench/, but in fact that location no
longer resolves.

3 http://www.wiretrip.net/rfp/libwhisker/
4 http://www.cirt.net/code/nikto.shtml
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7 Summary

We have designed and implemented the idsprobe framework to facilitate the creation
of offline as well as live evasion test-cases in a pluggable fashion, coupled with fully
automated testing of different NIDS on the resulting test-cases. We aim for the system
to encourage extension and broad use by the community, and to this end will provide
the software to others upon request, and ultimately aim to maintain it in as a public
open-source resource.
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